Description

一年在外 父母时刻牵挂

春节回家 你能做几天好孩子吗

寒假里尝试做做下面的事情吧



陪妈妈逛一次菜场

悄悄给爸爸买个小礼物

主动地 强烈地 要求洗一次碗

某一天早起 给爸妈用心地做回早餐



如果愿意 你还可以和爸妈说

咱们玩个小游戏吧 ACM课上学的呢~



下面是一个二人小游戏:桌子上有M堆扑克牌;每堆牌的数量分别为Ni(i=1…M);两人轮流进行;每走一步可以任意选择一堆并取走其中的任意张牌;桌子上的扑克全部取光,则游戏结束;最后一次取牌的人为胜者。

现在我们不想研究到底先手为胜还是为负,我只想问大家:

――“先手的人如果想赢,第一步有几种选择呢?”
 

Input

输入数据包含多个测试用例,每个测试用例占2行,首先一行包含一个整数M(1<M<=100),表示扑克牌的堆数,紧接着一行包含M个整数Ni(1<=Ni<=1000000,i=1…M),分别表示M堆扑克的数量。M为0则表示输入数据的结束。
 

Output

如果先手的人能赢,请输出他第一步可行的方案数,否则请输出0,每个实例的输出占一行。
 

Sample Input

3
5 7 9
0
 

Sample Output

1
题目分析 一.
      如果a1^a2^a3^...^an=0 ( 即 : nim-sum=0 ) , 说明先手没有必赢策略, 方法数肯定为 0;
二. 假设先手的人有必赢策略。 问题则转化为=>在任意一堆拿任意K张牌,并且剩下所有堆的nim-sum=0(P-position)的方案总数。 1. 现在我们先看一个例子(5,7,9),并假设从第一堆取任意K张牌。 排除第一堆牌的nim-sum为 7^9=14 0111 ^1001 ------- 1110 如果要使所有堆的nim-sum=0成立,则第一堆取掉K张以后必定为1110,因为X^X=0。 所以要观察 5-k=14 k>0 成立,此例子(在第一堆取任意K张牌)明显的不成立。但并不代表在第二或第三堆取任意K张牌的解不成立。 2. 现在看第二个例子(15,7,9),并假设从第一堆取任意K张牌。 排队第一堆牌的nim-sum为7^9=14,和第一个例子相同,所以问题变为观察 15-k=14 k>0 是否成立。 当然这个例子是成立的。 三.
      总结得出: 在任意一堆拿任意K张牌,并且所有堆的nim-sum=0 成立的条件为:排除取掉K张牌的那一堆的nim-sum必须少于该堆牌上的数量(例子二),否则不能在此堆上取任意K张牌使所有堆的nim-sum=0成立(例子一)。 故总方案数为 ( 在任意一堆拿任意K张牌,并且所有堆的nim-sum=0 成立 ) 的总数。 代码如下:
#include <iostream>
int heap[101];
int main ()
{
int T;
while ( scanf ( "%d",&T ), T )
{
int res = 0 , nCount = 0;
for ( int i = 0; i != T; ++ i )
{
scanf ( "%d",heap + i );
res ^= heap[i];
}
if ( res == 0 )
{
puts ( "0" );
continue;
}
int cmp = 0;
for ( int i = 0; i != T; ++ i )
{
cmp = res ^ heap[i];
if ( cmp < heap[i] )
{
nCount ++;
}
}
printf ( "%d\n",nCount );
}
return 0;
}

HDOJ HDU 1850 Being a Good Boy in Spring Festival的更多相关文章

  1. hdu 1850 Being a Good Boy in Spring Festival(Nimm Game)

    题意:Nimm Game 思路:Nimm Game #include<iostream> #include<stdio.h> using namespace std; int ...

  2. HDU.1850 being a good boy in spring festival (博弈论 尼姆博弈)

    HDU.1850 Being a Good Boy in Spring Festival (博弈论 尼姆博弈) 题意分析 简单的nim 博弈 博弈论快速入门 代码总览 #include <bit ...

  3. HDU 1850 Being a Good Boy in Spring Festival

    此题先考虑第一种,5 7 9的情况,先手如果想赢,则必定要把异或值变为0,因为随便取,所以此处的异或指的是对堆中的石子数进行异或,而非异或其SG函数. 首先7^9=14,因为要异或为0,则5要变成14 ...

  4. hdu 1850 Being a Good Boy in Spring Festival 博弈论

    求可行的方案数!! 代码如下: #include<stdio.h> ]; int main(){ int n,m; while(scanf("%d",&n)&a ...

  5. HDU 1850 Being a Good Boy in Spring Festival (Nim博弈)

    Being a Good Boy in Spring Festival Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32 ...

  6. HDU 1850 Being a Good Boy in Spring Festival(博弈·Nim游戏)

    Being a Good Boy in Spring Festival Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32 ...

  7. HDU 1850 Being a Good Boy in Spring Festival 在春节做乖孩子(Nim博弈,微变形)

    题意: 思路: 如果全部扑克牌数目异或的结果ans为0,则必输,输出0.否则,必须要给对方一个P状态,可以对所有扑克堆进行逐个排查,将ans^a[i]就可以得到除了a[i]之外其他扑克数的异或结果tm ...

  8. 题解报告:hdu 1850 Being a Good Boy in Spring Festival(尼姆博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1850 Problem Description 一年在外 父母时刻牵挂春节回家 你能做几天好孩子吗寒假里 ...

  9. 【HDU】1850 Being a Good Boy in Spring Festival

    http://acm.hdu.edu.cn/showproblem.php?pid=1850 题意:同nim...顺便求方案数... #include <cstdio> #include ...

随机推荐

  1. python emoji 表情过滤

    http://my.oschina.net/jiemachina/blog/189460 注意替换的这些emoji是标准的表情字符,每个表情本来是2个字节,替换成字符串后,每个表情就变成12个字符了, ...

  2. composer 使用

    #安装 composer curl -sS https://getcomposer.org/installer | php或直接下载 composer.phar( https://getcompose ...

  3. WEB前端工程师的职业发展路线图、怎样做WEB前端职业规划

    20151028整理 —————————— 知乎-Web前端的路该怎么走?(2015年发表) 在规模越大的团队,工作划分得越细腻,专注的点就越深,但同时就可能会被限制在某个狭窄点上,成为某个角落的技术 ...

  4. 揭开Redis的神秘面纱

    本篇博文将为你解开Redis的神秘面纱,通过阅读本篇博文你将了解到以下内容: 什么是Redis? 为什么选择 Redis? 什么场景下用Redis? Redis 支持哪些语言? Redis下载 Red ...

  5. RNN,LSTM,GRU简单图解:

    一篇经典的讲解RNN的,大部分网络图都来源于此:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 每一层每一时刻的输入输出:https ...

  6. linux每日命令(22):find命令参数详解

    一. name选项 文件名选项是find命令最常用的选项,要么单独使用该选项,要么和其他选项一起使用. 可以使用某种文件名模式来匹配文件,记住要用引号将文件名模式引起来. 不管当前路径是什么,如果想要 ...

  7. oracle 11g rac asm磁盘组增加硬盘

    要增加磁盘的磁盘组为:DATA 要增加的磁盘为: /dev/sde1 在第一个节点上:[root@rac1 ~]# fdisk /dev/sdeDevice contains neither a va ...

  8. 【30集iCore3_ADP出厂源代码(ARM部分)讲解视频】30-10底层驱动之I2C

    视频简介:该视频介绍iCore3应用开发平台中I2C通信的实现方法. 源视频包下载地址:链接:http://pan.baidu.com/s/1dF5Ssbn 密码:czw8 银杏科技优酷视频发布区:h ...

  9. zookeeper 入门(二)

    上一篇教程中重点讲解了如何部署启动一台zookeeper服务 本章中我们会重点讲解下如何 部署一套zookeeper的集群环境 基于paxos 算法,部署一套集群环境要求 至少 要有3个节点  并且节 ...

  10. Java知多少(16)StringBuffer与StringBuider

    String 的值是不可变的,每次对String的操作都会生成新的String对象,不仅效率低,而且耗费大量内存空间. StringBuffer类和String类一样,也用来表示字符串,但是Strin ...