import numpy as np
import sys def conv_(img, conv_filter):
filter_size = conv_filter.shape[1]
result = np.zeros((img.shape))
# 循环遍历图像以应用卷积运算
for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)):
for c in np.uint16(np.arange(filter_size/2.0, img.shape[1]-filter_size/2.0+1)):
# 卷积的区域
curr_region = img[r-np.uint16(np.floor(filter_size/2.0)):r+np.uint16(np.ceil(filter_size/2.0)),
c-np.uint16(np.floor(filter_size/2.0)):c+np.uint16(np.ceil(filter_size/2.0))]
# 卷积操作
curr_result = curr_region * conv_filter
conv_sum = np.sum(curr_result)
# 将求和保存到特征图中
result[r, c] = conv_sum # 裁剪结果矩阵的异常值
final_result = result[np.uint16(filter_size/2.0):result.shape[0]-np.uint16(filter_size/2.0),
np.uint16(filter_size/2.0):result.shape[1]-np.uint16(filter_size/2.0)]
return final_result def conv(img, conv_filter):
# 检查图像通道的数量是否与过滤器深度匹配
if len(img.shape) > 2 or len(conv_filter.shape) > 3:
if img.shape[-1] != conv_filter.shape[-1]:
print("错误:图像和过滤器中的通道数必须匹配")
sys.exit() # 检查过滤器是否是方阵
if conv_filter.shape[1] != conv_filter.shape[2]:
print('错误:过滤器必须是方阵')
sys.exit() # 检查过滤器大小是否是奇数
if conv_filter.shape[1] % 2 == 0:
print('错误:过滤器大小必须是奇数')
sys.exit() # 定义一个空的特征图,用于保存过滤器与图像的卷积输出
feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1,
img.shape[1] - conv_filter.shape[1] + 1,
conv_filter.shape[0])) # 卷积操作
for filter_num in range(conv_filter.shape[0]):
print("Filter ", filter_num + 1)
curr_filter = conv_filter[filter_num, :] # 检查单个过滤器是否有多个通道。如果有,那么每个通道将对图像进行卷积。所有卷积的结果加起来得到一个特征图。
if len(curr_filter.shape) > 2:
conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0])
for ch_num in range(1, curr_filter.shape[-1]):
conv_map = conv_map + conv_(img[:, :, ch_num], curr_filter[:, :, ch_num])
else:
conv_map = conv_(img, curr_filter)
feature_maps[:, :, filter_num] = conv_map
return feature_maps def pooling(feature_map, size=2, stride=2):
# 定义池化操作的输出
pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1),
np.uint16((feature_map.shape[1] - size + 1) / stride + 1),
feature_map.shape[-1])) for map_num in range(feature_map.shape[-1]):
r2 = 0
for r in np.arange(0, feature_map.shape[0] - size + 1, stride):
c2 = 0
for c in np.arange(0, feature_map.shape[1] - size + 1, stride):
pool_out[r2, c2, map_num] = np.max([feature_map[r: r+size, c: c+size, map_num]])
c2 = c2 + 1
r2 = r2 + 1
return pool_out
import skimage.data
import numpy
import matplotlib
import matplotlib.pyplot as plt
import NumPyCNN as numpycnn # 读取图像
img = skimage.data.chelsea()
# 转成灰度图像
img = skimage.color.rgb2gray(img) # 初始化卷积核
l1_filter = numpy.zeros((2, 3, 3))
# 检测垂直边缘
l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])
# 检测水平边缘
l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]]) """
第一个卷积层
"""
# 卷积操作
l1_feature_map = numpycnn.conv(img, l1_filter)
# ReLU
l1_feature_map_relu = numpycnn.relu(l1_feature_map)
# Pooling
l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2) """
第二个卷积层
"""
# 初始化卷积核
l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
# 卷积操作
l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)
# ReLU
l2_feature_map_relu = numpycnn.relu(l2_feature_map)
# Pooling
l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2) """
第三个卷积层
"""
# 初始化卷积核
l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
# 卷积操作
l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)
# ReLU
l3_feature_map_relu = numpycnn.relu(l3_feature_map)
# Pooling
l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2) """
结果可视化
"""
fig0, ax0 = plt.subplots(nrows=1, ncols=1)
ax0.imshow(img).set_cmap("gray")
ax0.set_title("Input Image")
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
plt.savefig("in_img1.png", bbox_inches="tight")
plt.close(fig0) # 第一层
fig1, ax1 = plt.subplots(nrows=3, ncols=2)
ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
ax1[0, 0].get_xaxis().set_ticks([])
ax1[0, 0].get_yaxis().set_ticks([])
ax1[0, 0].set_title("L1-Map1") ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
ax1[0, 1].get_xaxis().set_ticks([])
ax1[0, 1].get_yaxis().set_ticks([])
ax1[0, 1].set_title("L1-Map2") ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")
ax1[1, 0].get_xaxis().set_ticks([])
ax1[1, 0].get_yaxis().set_ticks([])
ax1[1, 0].set_title("L1-Map1ReLU") ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")
ax1[1, 1].get_xaxis().set_ticks([])
ax1[1, 1].get_yaxis().set_ticks([])
ax1[1, 1].set_title("L1-Map2ReLU") ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 0].set_title("L1-Map1ReLUPool") ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 1].set_title("L1-Map2ReLUPool") plt.savefig("L1.png", bbox_inches="tight")
plt.close(fig1) # 第二层
fig2, ax2 = plt.subplots(nrows=3, ncols=3)
ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")
ax2[0, 0].get_xaxis().set_ticks([])
ax2[0, 0].get_yaxis().set_ticks([])
ax2[0, 0].set_title("L2-Map1") ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")
ax2[0, 1].get_xaxis().set_ticks([])
ax2[0, 1].get_yaxis().set_ticks([])
ax2[0, 1].set_title("L2-Map2") ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")
ax2[0, 2].get_xaxis().set_ticks([])
ax2[0, 2].get_yaxis().set_ticks([])
ax2[0, 2].set_title("L2-Map3") ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")
ax2[1, 0].get_xaxis().set_ticks([])
ax2[1, 0].get_yaxis().set_ticks([])
ax2[1, 0].set_title("L2-Map1ReLU") ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")
ax2[1, 1].get_xaxis().set_ticks([])
ax2[1, 1].get_yaxis().set_ticks([])
ax2[1, 1].set_title("L2-Map2ReLU") ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")
ax2[1, 2].get_xaxis().set_ticks([])
ax2[1, 2].get_yaxis().set_ticks([])
ax2[1, 2].set_title("L2-Map3ReLU") ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax2[2, 0].get_xaxis().set_ticks([])
ax2[2, 0].get_yaxis().set_ticks([])
ax2[2, 0].set_title("L2-Map1ReLUPool") ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax2[2, 1].get_xaxis().set_ticks([])
ax2[2, 1].get_yaxis().set_ticks([])
ax2[2, 1].set_title("L2-Map2ReLUPool") ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")
ax2[2, 2].get_xaxis().set_ticks([])
ax2[2, 2].get_yaxis().set_ticks([])
ax2[2, 2].set_title("L2-Map3ReLUPool") plt.savefig("L2.png", bbox_inches="tight")
plt.close(fig2) # 第三层
fig3, ax3 = plt.subplots(nrows=1, ncols=3)
ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")
ax3[0].get_xaxis().set_ticks([])
ax3[0].get_yaxis().set_ticks([])
ax3[0].set_title("L3-Map1") ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")
ax3[1].get_xaxis().set_ticks([])
ax3[1].get_yaxis().set_ticks([])
ax3[1].set_title("L3-Map1ReLU") ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax3[2].get_xaxis().set_ticks([])
ax3[2].get_yaxis().set_ticks([])
ax3[2].set_title("L3-Map1ReLUPool") plt.savefig("L3.png", bbox_inches="tight")
plt.close(fig3)

使用Numpy实现卷积神经网络(CNN)的更多相关文章

  1. 深度学习基础-基于Numpy的卷积神经网络(CNN)实现

    本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...

  2. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  3. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  4. 基于MNIST数据的卷积神经网络CNN

    基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211 ...

  5. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  6. paper 162:卷积神经网络(CNN)解析

    卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...

  7. 写给程序员的机器学习入门 (八) - 卷积神经网络 (CNN) - 图片分类和验证码识别

    这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前, ...

  8. python机器学习卷积神经网络(CNN)

    卷积神经网络(CNN) 关注公众号"轻松学编程"了解更多. 一.简介 ​ 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人 ...

  9. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

随机推荐

  1. c++学习笔记(六)- vector使用和内存分配

    -----------------------------2019/01/15------------------------------- 复习了下迭代器,其实c++参考里讲的很清楚,主要需要辨析规 ...

  2. Java注解的原理

    自Java5.0版本引入注解之后,它就成为了Java平台中非常重要的一部分.开发过程中,我们也时常在应用代码中会看到诸如@Override,@Deprecated这样的注解.这篇文章中,我将向大家讲述 ...

  3. Linux服务器安装部署redis

    参考地址: redis教程:http://www.runoob.com/redis/redis-tutorial.html redis百度百科:https://baike.baidu.com/item ...

  4. nginx tomcat https

    .首先确保机器上安装了openssl和openssl-devel #yum install openssl #yum install openssl-devel . server { listen s ...

  5. spark机器学习笔记01

     1)外部数据源 val distFile1 = sc.textFile("data.txt") //本地当前目录下文件 val distFile2 =sc.textFile(& ...

  6. flask框架----上下文管理

    一.上下文管理相关知识点: a.类似于本地线程 创建Local类: { 线程或协程唯一标识: { 'stack':[request],'xxx':[session,] }, 线程或协程唯一标识: { ...

  7. MyEclipse如何配置Struts2源码的框架压缩包

    1.MyEclipse如何配置Struts2源码的框架压缩包 如本机的Struts2框架压缩包路径为:D:\MyEclipseUserLibraries\struts\struts-2.3.15.3- ...

  8. 注册页面的JSON响应方式详细分析(与前端页面交互方式之一)

    控制器层 需求分析: 访问路径:`/user/reg.do` //自己根据功能需求设定的请求参数:`username=xx&password=xx&&phone=xx& ...

  9. Spring/SpringMVC/MyBatis(持久层、业务层、控制层思路小结)

    准备工作: ## 7 导入省市区数据到数据库中 1. 从FTP下载SQL脚本文件 2. 把脚本文件移动到易于描述绝对路径的位置 3. 进入MySQL控制台 4. 使用`xxx_xxx`数据库 5. 运 ...

  10. mvc 前端校验

    首先解决 Ajax.BeginFor异步提交表单,给表单添加样式的问题.不能直接用class属性,网上找了很多都是用ClassName,经过测试不管用,看源代码发现生成的是ClassName而非cla ...