HDU 5976 Detachment(拆分)
HDU 5976 Detachment(拆分)
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description - 题目描述
In the history of this planet,there is an old puzzle.
You have a line segment with x units’ length representing one dimension.The line segment can be split into a number of small line segments: a1,a2, … (x= a1+a2+…) assigned to different dimensions. And then, the multidimensional space has been established. Now there are two requirements for this space:
1.Two different small line segments cannot be equal ( ai≠aj when i≠j).
2.Make this multidimensional space size s as large as possible (s= a1∗a2*...).Note that it allows to keep one dimension.That's to say, the number of ai can be only one.
Now can you solve this question and find the maximum size of the space?(For the final number is too large,your answer will be modulo 10^9+7)
在一个高度发达的外星文明中,有着近乎无限维度的生存空间。
在这颗星球的历史中,有道古老的谜题。
你有一条长x个单位长度的线段表示一个维度。这条线段可以被拆分为若干小线段:a1,a2, … (x= a1+a2+…)并分配为不同的维度。然后,多维空间就建立起来了。现在,这个空间有两个限制:
.两个不同的小线段不能相等( ai≠aj when i≠j)。
.多维空间的大小s要尽可能大(s= a1∗a2*...)。注意,各维度只能保持一种。也就是说,ai的值必须唯一。
现在的你能解决这个问题并找出最大的空间吗?(结果可能很大,输出模10^+)
CN
Then T lines follow. Each line contains one integer x.
1≤T≤10^6, 1≤x≤10^9
第一行为一个整数T,描述测试用例的数量。
随后T行。每行有一个整数x。
≤T≤^, ≤x≤^
CN
Output - 输出
s的最大值需要模10^+。注意,模10^+7是在获得最大乘积后。
CN
Sample Input - 输入样例
1
4
Sample Output - 输出样例
4
题解
先猜一发最优策略:2+3+4+5+6+……
然后再猜一发对于剩下数的分配策略:每次从后往前,对每个数+1。
接着就发现似乎策略就是这样了。
后面需要做的处理:求前n项和,求前n项积。
最后遇到(a % mod)/(b % mod)的时候需要用逆元。
把(a/b)%mod转化为(a * inv b)%mod 不嫌弃速度的话可以用费马小定理:
mod为质数时,inv a = a^(mod - 2)
或者用其他方法…………
代码 C++
#include <cstdio>
#include <algorithm>
#define mod 1000000007
#define mx 44722
__int64 mul[mx] = { }, sum[mx];
__int64 qMod(__int64 a, int n){
__int64 opt = ;
while (n){
if (n & ) opt = (opt*a) % mod;
n >>= ;
a = (a*a) % mod;
}
return opt;
}
__int64 lr(int l, int r){//[l, r]
return (mul[r] * qMod(mul[l - ], mod - )) % mod;
}
void rdy(){
int i, j;
for (i = , j = ; i < mx; ++i, ++j){
sum[i] = j + sum[i - ];
mul[i] = (j * mul[i - ]) % mod;
}
}
int main(){
rdy();
int t, len, w, l, r;
__int64 x, opt;
scanf("%d", &t);
while (t--){
scanf("%I64d", &x);
if (x < ) opt = x;
else{
len = std::upper_bound(sum, sum + mx, x) - sum - ;
r = len + (x - sum[len]) / len;
w = (x - sum[len]) % len;
opt = lr(r - len + , r - w);
if (w) opt *= lr(r + - w, r + ), opt %= mod;
}
printf("%I64d\n", opt);
}
return ;
}
HDU 5976 Detachment(拆分)的更多相关文章
- HDU 5976 Detachment 打表找规律
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5976 Detachment Time Limit: 4000/2000 MS (Java/Other ...
- HDU 5976 Detachment 【贪心】 (2016ACM/ICPC亚洲区大连站)
Detachment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- hdu 5976 Detachment
Detachment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- hdu 5976 Detachment 脑洞题 猜结论
题目链接 题意 将\(x\)拆成\(a_1+a_2+...+\)的形式,且\(a_1\lt a_2\lt...\),使得\(a_1*a_2*...\)取到最大值 思路 大胆猜结论. 首先拆分的形式中肯 ...
- HDU - 5976 Detachment(逆元)
题意:将一个数x拆成a1+a2+a3+……,ai不等于aj,求最大的a1*a2*a3*……. 分析: 1.预处理前缀和前缀积,因为拆成1对乘积没有贡献,所以从2开始拆起. 2.找到一个id,使得2+3 ...
- HDU 5976 数学,逆元
1.HDU 5976 Detachment 2.题意:给一个正整数x,把x拆分成多个正整数的和,这些数不能有重复,要使这些数的积尽可能的大,输出积. 3.总结:首先我们要把数拆得尽可能小,这样积才会更 ...
- HDU 1028(数字拆分 分治)
题意是求所给的数能够被拆分成的不同组合数目. 方法有三种: 一.完全背包. 限制条件:所用数字不大于 n. 目标:求分解种数(组合出 n 的方法数). 令 dp[ i ][ j ] = x 表示 用前 ...
- HDU 5976 数学
Detachment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- HDU 1028 整数拆分 HDU 2082 找单词 母函数
生成函数(母函数) 母函数又称生成函数.定义是给出序列:a0,a1,a2,...ak,...an, 那么函数G(x)=a0+a1*x+a2*x2+....+ak*xk +...+an* xn 称为序 ...
随机推荐
- python glob 模块
glob模块用来查找文件目录和文件,可以和常用的find功能进行类比.glob支持*?[]这三种通配符.返回的数据类型是list.常见的两个方法有glob.glob()和glob.iglob(),ig ...
- 【Alpha版本】冲刺阶段——Day5
[Alpha版本]冲刺阶段--Day5 阅读目录 今日进展 问题困难 明日任务 今日贡献量 站立式会议 TODOlist [今日进展] 完成登录类代码 public void LOGIN() { co ...
- 转:【专题六】UDP编程
引用: 前一个专题简单介绍了TCP编程的一些知识,UDP与TCP地位相当的另一个传输层协议,它也是当下流行的很多主流网络应用(例如QQ.MSN和Skype等一些即时通信软件传输层都是应用UDP协议的) ...
- 那些年 Qzone
那些年转在Qzone里的: 不喊痛,不一定没感觉.不要求,不一定没期待.不落泪,不一定没伤痕.不说话,不一定没心声.沉默,不代表自己没话说.离开,不代表自己很潇洒.快乐,不代表自己没伤心.幸福,不代表 ...
- <转>jmeter(一)基础介绍
本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...
- linux 下面压缩、解压.rar文件
一,解压问题 在网上下东西的时候,经常会遇到.rar后缀的文件,我用tar解压,解压不出,上网找啊找,一直没找到什么合适的工具来压缩和解压.rar后缀的文件,现在我找到了. 二,rar和unrar安装 ...
- jquery 页面分页的实现
<!DOCTYPE html> <html> <head> <title>分页</title> <link rel="s ...
- 用WPE+CCproxy+自动代理截取安卓游戏封包
wpe三件套:https://pan.baidu.com/s/19gI2GPZ0iuu4wpKljCOn4A 用WPE+CCproxy+自动代理截取安卓游戏封包>>
- java基础之包装类型
包装类型引入该类型的原因: 因为基本数据类型不具备对象的特性,不能调用方法,所以有时需要将其转换为包装类. 包装类型有两大类方法: 1.将本类型和其它基本类型进行转换方法. ...
- Python笔记 #19# 实现bpnn
代码编辑&解释工具:Jupyter Notebook 快速入门 形象说明BP神经网络的用法(图片来自推特): Bpnn类最主要的三个方法: initialize方法,用于设定神经网络的层数.各 ...