#include <bits/stdc++.h>

 using namespace std;
#define rep(i,a,n) for (long long i=a;i<n;i++)
#define per(i,a,n) for (long long i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((long long)(x).size())
typedef vector<long long> VI;
typedef long long ll;
typedef pair<long long,long long> PII;
const ll mod=1e9+;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head long long _,n;
namespace linear_seq
{
const long long N=;
ll res[N],base[N],_c[N],_md[N]; vector<long long> Md;
void mul(ll *a,ll *b,long long k)
{
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k)
_c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (long long i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
long long solve(ll n,VI a,VI b)
{ // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=,pnt=;
long long k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (long long p=pnt;p>=;p--)
{
mul(res,res,k);
if ((n>>p)&)
{
for (long long i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s)
{
VI C(,),B(,);
long long L=,m=,b=;
rep(n,,SZ(s))
{
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n)
{
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
}
else
{
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
long long gao(VI a,ll n)
{
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main()
{
while(~scanf("%I64d", &n))
{ printf("%I64d\n",linear_seq::gao(VI{,,,,,,,,,, },n-));
}
}

杜教BM【转载】的更多相关文章

  1. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

  2. 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推

    题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...

  3. 杜教BM

    #include <algorithm> #include <iterator> #include <iostream> #include <cstring& ...

  4. 杜教BM递推板子

    Berlekamp-Massey 算法用于求解常系数线性递推式 #include<bits/stdc++.h> typedef std::vector<int> VI; typ ...

  5. 杜教BM模板

    #include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #defi ...

  6. 黑科技之杜教bm

    这个板子能够解决任何线性递推式,只要你确定某个数列的某项只与前几项线性相关,那么把它前若干项丢进去,这个板子就能给你返回你要求的某项的值. 原理???(待补充) #include<bits/st ...

  7. BM求线性递推模板(杜教版)

    BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...

  8. HDU 6395 Sequence 杜教板子题

    题目意思非常明确,就是叫你求第n项,据我们学校一个大佬说他推出了矩阵,但是我是菜鸡,那么肯定是用简单的方法水过啦!我们先p^(1/2)的复杂度处理出i=[i,p]范围内的所有种类的(int)(p/i) ...

  9. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

随机推荐

  1. The difference between ppp and ndis

  2. 用c++写一个数据库

    [cpp] view plain copy 第一步:构建一个头文件(**.h) [cpp] view plain copy #include<iostream> #include<i ...

  3. Java并发编程_synchronized关键字的用法(一)

    synchronized:意思是 同步,也就是 共享资源 Synchronized修饰方法:对象锁 Static Synchronized修饰方法:类锁 下面代码手动敲一遍,就会理解  一.Synch ...

  4. 读书笔记 C#委托的BeginInvoke、EndInvoke之浅析

    c#中有一种类型叫委托,它是一种引用类型.可以引用静态与非静态的方法,且这些方法的参数列表和返回值类型必须与所声明的委托一致. 委托引用的方法可以通过BeginInvoke和EndInvoke来异步进 ...

  5. 如何查看.java文件的字节码(原码)

    出自于:https://www.cnblogs.com/tomasman/p/6751751.html 直接了解foreach底层有些困难,我们需要从更简单的例子着手.下面上一个简单例子: 1 pub ...

  6. בוא--来吧--IPA--希伯来语

    灰常好听的希伯来语歌曲, Rita唱得真好.

  7. org.apache.httpcomponents httpclient 发起HTTP JSON请求

    1. pom.xml <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactI ...

  8. Tensorflow函数:tf.zeros

    tf.zeros函数 tf.zeros( shape, dtype=tf.float32, name=None ) 定义在:tensorflow/python/ops/array_ops.py. 创建 ...

  9. day 30 客户端获取cmd 命令的步骤

    import subprocessimport structimport jsonfrom socket import *server=socket(AF_INET,SOCK_STREAM)serve ...

  10. Python 基础字典的增删改查

    # 字典相关的代码## 1.字典的特性:a 字典的无序性: b 数据关联性强 C 键键值对 唯一一个映射数据类型# 字典的键必修二是可哈希的(不可变的数据类型:,字符串,数字的,布尔值,元祖)# 并且 ...