杜教BM【转载】
#include <bits/stdc++.h> using namespace std;
#define rep(i,a,n) for (long long i=a;i<n;i++)
#define per(i,a,n) for (long long i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((long long)(x).size())
typedef vector<long long> VI;
typedef long long ll;
typedef pair<long long,long long> PII;
const ll mod=1e9+;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head long long _,n;
namespace linear_seq
{
const long long N=;
ll res[N],base[N],_c[N],_md[N]; vector<long long> Md;
void mul(ll *a,ll *b,long long k)
{
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k)
_c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (long long i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
long long solve(ll n,VI a,VI b)
{ // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=,pnt=;
long long k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (long long p=pnt;p>=;p--)
{
mul(res,res,k);
if ((n>>p)&)
{
for (long long i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s)
{
VI C(,),B(,);
long long L=,m=,b=;
rep(n,,SZ(s))
{
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n)
{
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
}
else
{
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
long long gao(VI a,ll n)
{
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main()
{
while(~scanf("%I64d", &n))
{ printf("%I64d\n",linear_seq::gao(VI{,,,,,,,,,, },n-));
}
}
杜教BM【转载】的更多相关文章
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推
题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...
- 杜教BM
#include <algorithm> #include <iterator> #include <iostream> #include <cstring& ...
- 杜教BM递推板子
Berlekamp-Massey 算法用于求解常系数线性递推式 #include<bits/stdc++.h> typedef std::vector<int> VI; typ ...
- 杜教BM模板
#include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #defi ...
- 黑科技之杜教bm
这个板子能够解决任何线性递推式,只要你确定某个数列的某项只与前几项线性相关,那么把它前若干项丢进去,这个板子就能给你返回你要求的某项的值. 原理???(待补充) #include<bits/st ...
- BM求线性递推模板(杜教版)
BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...
- HDU 6395 Sequence 杜教板子题
题目意思非常明确,就是叫你求第n项,据我们学校一个大佬说他推出了矩阵,但是我是菜鸡,那么肯定是用简单的方法水过啦!我们先p^(1/2)的复杂度处理出i=[i,p]范围内的所有种类的(int)(p/i) ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
随机推荐
- 逆袭之旅DAY.XIA.Object中常用方法
2018-07-31
- Win10系列:JavaScript 模板绑定
WinJS库模板提供了一种格式化显示多条数据的便捷方式,通过这种方式可以将模板与ListView或FlipView等控件结合使用以控制数据的显示格式.定义一个WinJS库模板的方法与定义WinJS库控 ...
- Win10系列:JavaScript 项目模板中的文件和项模板文件
通过上面内容的学习,相信读者已经对各种项目模板和项模板有了大致的了解,本节将进一步介绍项目模板中默认包含的项目文件以及项模板文件,首先讲解这些文件中的初始内容以及作用,然后介绍在一个页面中如何添加控件 ...
- SQL优化过程中常见Oracle HINT
在SQL语句优化过程中,我们经常会用到hint,现总结一下在SQL优化过程中常见Oracle HINT的用法: 1. /*+ALL_ROWS*/ 表明对语句块选择基于开销的优化方法,并获得最佳吞吐量, ...
- MYSQL基础知识小盲区
MYSQL必会的知识 命令行 启动mysql: mysql -u用户名 -p密码 显示表中的各列详细信息: show columns form tablename 等价于 desc ...
- DevExpress ASP.NET v18.2新功能详解(三)
行业领先的.NET界面控件2018年第二次重大更新——DevExpress v18.2日前正式发布,本站将以连载的形式为大家介绍新版本新功能.本文将介绍了DevExpress ASP.NET Cont ...
- matlab运行中出现“Caught "std::exception" Exception message is: Message Catalog MATLAB:builtins was not loaded from the file."
在我运行过程中,经常爆出这一不确定是什么的问题,经排查后发现,原来是fopen 文件后,没有及时fclose导致的.
- linux一些命令的介绍
http://www.runoob.com/linux/linux-command-manual.html 寻找文档操作命令wc -l时,发现一个好的介绍linux操作命令的网站.
- js 唤起APP
常常有这样的场景,咱们开发出来的APP需要进行推广,比如在页面顶部来一张大Banner图片,亦或一张二维码.但往往我们都是直接给推广图片加了一个下载链接(App Store中的).所以咱们来模拟一下用 ...
- 2018ICPC青岛 E - Plants vs. Zombies (二分+模拟)
ZOJ - 4062 题意:有n个植物排成一排,按顺序植物的编号是1-n,每个植物都有一个生长速率,有一个机器人,机器人可以走m步,每走一步,这个机器人就会浇一次水,浇一次水那个植物就会长 自身的生长 ...