#include <bits/stdc++.h>

 using namespace std;
#define rep(i,a,n) for (long long i=a;i<n;i++)
#define per(i,a,n) for (long long i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((long long)(x).size())
typedef vector<long long> VI;
typedef long long ll;
typedef pair<long long,long long> PII;
const ll mod=1e9+;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head long long _,n;
namespace linear_seq
{
const long long N=;
ll res[N],base[N],_c[N],_md[N]; vector<long long> Md;
void mul(ll *a,ll *b,long long k)
{
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k)
_c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (long long i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
long long solve(ll n,VI a,VI b)
{ // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=,pnt=;
long long k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (long long p=pnt;p>=;p--)
{
mul(res,res,k);
if ((n>>p)&)
{
for (long long i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s)
{
VI C(,),B(,);
long long L=,m=,b=;
rep(n,,SZ(s))
{
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n)
{
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
}
else
{
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
long long gao(VI a,ll n)
{
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main()
{
while(~scanf("%I64d", &n))
{ printf("%I64d\n",linear_seq::gao(VI{,,,,,,,,,, },n-));
}
}

杜教BM【转载】的更多相关文章

  1. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

  2. 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推

    题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...

  3. 杜教BM

    #include <algorithm> #include <iterator> #include <iostream> #include <cstring& ...

  4. 杜教BM递推板子

    Berlekamp-Massey 算法用于求解常系数线性递推式 #include<bits/stdc++.h> typedef std::vector<int> VI; typ ...

  5. 杜教BM模板

    #include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #defi ...

  6. 黑科技之杜教bm

    这个板子能够解决任何线性递推式,只要你确定某个数列的某项只与前几项线性相关,那么把它前若干项丢进去,这个板子就能给你返回你要求的某项的值. 原理???(待补充) #include<bits/st ...

  7. BM求线性递推模板(杜教版)

    BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...

  8. HDU 6395 Sequence 杜教板子题

    题目意思非常明确,就是叫你求第n项,据我们学校一个大佬说他推出了矩阵,但是我是菜鸡,那么肯定是用简单的方法水过啦!我们先p^(1/2)的复杂度处理出i=[i,p]范围内的所有种类的(int)(p/i) ...

  9. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

随机推荐

  1. 逆袭之旅DAY28.XIA.异常处理

    2018-07-24  14:42:24 第一种: 第二种: 第三种:  执行 try--catch--finally--return(执行return  退出方法) 代码示例: 输入数字,输出对应课 ...

  2. LY.JAVA.DAY12.Scanner

    2018-07-24 13:23:18 Scanner类 一个可以使用正则表达式来解析基本类型和字符串的简单文本扫描器 package cn.itcast_01; /* * Scanner:用于接收键 ...

  3. bzoj1692

    题解: 二分最近的不相同 然后hash判断是否相同 然后贪心 代码: #include<bits/stdc++.h> using namespace std; #define ull un ...

  4. Python Django 之 静态文件存放设置

    一.静态文件存放路径设置STATICFILES_DIRS 1.在django项目目录下面新建静态文件保存目录 2.在setting中添加相应寻找静态文件目录的配置 STATICFILES_DIRS=( ...

  5. Xilinx SDK编译Microblaze时出错

    reference:http://www.eeboard.com/evaluation/digilent-cmod-a7-fpga/9/ 在vivado 2015.4中创建microblaze软核,l ...

  6. 关于这次安装Oracle

    前后大概经历了一个星期,今天下午(先是用的Navicat)当我尝试性的把用户名上方的复选项从服务名换成SID时,竟然瞬间连接成功了,整个人都是蒙B的,这样就好了? 之后我又用PLsql测试了一下,秒进 ...

  7. JavaWeb基础-认识JavaWeb

    程序开发体系 B/S 浏览器/服务器 开发维护成本低 客户端负载低 安全性低 C/S 客户端/服务器 成本高 客户端负载高 安全性高 javaweb简介 静态网页 HTML CSS,人浏览的数据是始终 ...

  8. 3.Python爬虫入门三之Urllib和Urllib2库的基本使用

    1.分分钟扒一个网页下来 怎样扒网页呢?其实就是根据URL来获取它的网页信息,虽然我们在浏览器中看到的是一幅幅优美的画面,但是其实是由浏览器解释才呈现出来的,实质它是一段HTML代码,加 JS.CSS ...

  9. Python 基础day3

    1.简述bit,byte,kb,MB,GB,TB的关系 1TB=1024GB;   1GB=1024MB ;  1MB=1024kb: 1kb=1024byte ; 1byte=8bit 2.简述as ...

  10. wxPython的使用--类似画板的界面

    # -*- coding: utf-8 -*-import wximport wx.lib.buttonsimport cPickleimport os class PaintWindow(wx.Wi ...