本文数据源及分析方法均参考《利用python进行数据分析》一书。但我重新对数据分析目标和步骤进行了组织,可以更加清晰的呈现整个挖掘分析流程。

分析对象为美国某短域名网站记录的短域名生成数据(http://1usagov.measuredvoice.com/)。数据基本结构如下,可以看到内容包括所用浏览器和操作系统(’a’)、用户所在时区(’tz’)等信息。

records[0]
#[Out]# {u'a': u'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.78 Safari/535.11',
#[Out]# u'al': u'en-US,en;q=0.8',
#[Out]# u'c': u'US',
#[Out]# u'cy': u'Danvers',
#[Out]# u'g': u'A6qOVH',
#[Out]# u'gr': u'MA',
#[Out]# u'h': u'wfLQtf',
#[Out]# u'hc': 1331822918,
#[Out]# u'hh': u'1.usa.gov',
#[Out]# u'l': u'orofrog',
#[Out]# u'll': [42.576698, -70.954903],
#[Out]# u'nk': 1,
#[Out]# u'r': u'http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/wfLQtf',
#[Out]# u't': 1331923247,
#[Out]# u'tz': u'America/New_York',
#[Out]# u'u': u'http://www.ncbi.nlm.nih.gov/pubmed/22415991'}

分析目标包括:(1)得到各地区用户的数量统计并绘图;(2)得到各地区windows和非windows用户的数量统计并绘图。

针对分析任务1:得到各地区用户的数量统计并绘图

1)从文件读取数据

import pandas as pd
from pandas import Series,DataFrame
import numpy as np
#此处为文件所在路径
path = 'D:\\apython\\usagov_bitly_data2012-03-16-1331923249.txt'
import json
records = [json.loads(line) for line in open(path)]

2)抽取用户时区信息

df = DataFrame(records)
timezones = df['tz'].fillna("missing")
timezones[timezones == ''] = "unknown"
timezones.head(2)
#[Out]# 0 America/New_York
#[Out]# 1 America/Denver

3)汇总统计时区信息

tz_counts = timezones.value_counts()
tz_counts.head(2)
#[Out]# America/New_York 1251
#[Out]# unkown 521

4)利用统计信息绘图

top10 = tz_counts[:10]
top10.plot(kind='barh')

针对分析任务2:得到各地区windows和非windows用户的数量统计并绘图

其中有几个步骤与任务1相同,不再重复介绍,统一标注为“同任务1”。

1)从文件读取数据

同任务1

2)抽取用户时区信息

同任务1

3)抽取操作系统信息

cdf = df[df.a.notnull()]
ops = ['windows' if ('Windows' in x) else 'not windows' for x in cdf['a']]
ops[:10]
#[Out]# ['windows',
#[Out]# 'not windows',
#[Out]# 'windows',
#[Out]# 'not windows',
#[Out]# 'windows',
#[Out]# 'windows',
#[Out]# 'windows',
#[Out]# 'windows',
#[Out]# 'not windows',
#[Out]# 'windows']

4)根据时区、系统信息分组

groups = cdf.groupby(['tz',ops])
groups.size()[:2]
#[Out]# tz
#[Out]# not windows 245
#[Out]# windows 276

5)汇总统计分组后的信息

mgroups = groups.size().unstack()
mgroups = mgroups.fillna(0)
mgroups[:2]
#[Out]# not windows windows
#[Out]# tz
#[Out]# 245 276
#[Out]# Africa/Cairo 0 3
mgroups['sum'] = mgroups.sum(axis = 1)
#获取用户总量前10的地区
tsum10 = mgroups.sort_values('sum')[-10:]
tsum10
#[Out]# not windows windows sum
#[Out]# tz
#[Out]# America/Sao_Paulo 13 20 33
#[Out]# Europe/Madrid 16 19 35
#[Out]# Pacific/Honolulu 0 36 36
#[Out]# Asia/Tokyo 2 35 37
#[Out]# Europe/London 43 31 74
#[Out]# America/Denver 132 59 191
#[Out]# America/Los_Angeles 130 252 382
#[Out]# America/Chicago 115 285 400
#[Out]# 245 276 521
#[Out]# America/New_York 339 912 1251
tsum10 = tsum10.drop('sum', axis = 1)
tsum10
#[Out]# windows not windows
#[Out]# tz
#[Out]# America/Sao_Paulo 20 13
#[Out]# Europe/Madrid 19 16
#[Out]# Pacific/Honolulu 36 0
#[Out]# Asia/Tokyo 35 2
#[Out]# Europe/London 31 43
#[Out]# America/Denver 59 132
#[Out]# America/Los_Angeles 252 130
#[Out]# America/Chicago 285 115
#[Out]# 276 245
#[Out]# America/New_York 912 339

6)利用统计信息绘图

tsum10.plot(kind='barh')

python短域名数据分析框架的更多相关文章

  1. Python爬虫与数据分析之爬虫技能:urlib库、xpath选择器、正则表达式

    专栏目录: Python爬虫与数据分析之python教学视频.python源码分享,python Python爬虫与数据分析之基础教程:Python的语法.字典.元组.列表 Python爬虫与数据分析 ...

  2. Python几种主流框架

    从GitHub中整理出的15个最受欢迎的Python开源框架.这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等. Django: Python Web应用开发框架 Djang ...

  3. Python金融大数据分析PDF

    Python金融大数据分析(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1CF2NhbgpMroLhW2sTm7IJQ 提取码:clmt 复制这段内容后打开百度网盘 ...

  4. python三大web框架Django,Flask,Flask,Python几种主流框架,13个Python web框架比较,2018年Python web五大主流框架

    Python几种主流框架 从GitHub中整理出的15个最受欢迎的Python开源框架.这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等. Django: Python We ...

  5. Django,Flask,Tornado三大框架对比,Python几种主流框架,13个Python web框架比较,2018年Python web五大主流框架

    Django 与 Tornado 各自的优缺点Django优点: 大和全(重量级框架)自带orm,template,view 需要的功能也可以去找第三方的app注重高效开发全自动化的管理后台(只需要使 ...

  6. 《Python金融大数据分析》高清PDF版|百度网盘免费下载|Python数据分析

    <Python金融大数据分析>高清PDF版|百度网盘免费下载|Python数据分析 提取码:mfku 内容简介 唯一一本详细讲解使用Python分析处理金融大数据的专业图书:金融应用开发领 ...

  7. python金融大数据分析PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书

    点击获取提取码:7k4b 内容简介 唯一一本详细讲解使用Python分析处理金融大数据的专业图书:金融应用开发领域从业人员必读. Python凭借其简单.易读.可扩展性以及拥有巨大而活跃的科学计算社区 ...

  8. Python 什么是flask框架?快速入门

    一:Python flask框架 前言 1.Python 面向对象的高级编程语言,以其语法简单.免费开源.免编译扩展性高,同时也可以嵌入到C/C++程序和丰富的第三方库,Python运用到大数据分析. ...

  9. 3.Python编程语言基础技术框架

    3.Python编程语言基础技术框架 3.1查看数据项数据类型 type(name) 3.2查看数据项数据id id(name) 3.3对象引用 备注Python将所有数据存为内存对象 Python中 ...

随机推荐

  1. 牛客练习赛41 B-666RPG

    题目链接:https://ac.nowcoder.com/acm/contest/373/B 题意:有n个回合,每个回合给1个数,每个回合你有两种选择 1.加上第i个数 2.将当前数乘-1 想知道有多 ...

  2. hdu-5889-最短路+网络流/最小割

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  3. xlrd 安装步骤

    官网 https://pypi.python.org/pypi/xlrd 下载 解压 执行python setup.py install进行安装 --------------------------- ...

  4. 函数使用四:采购发票MIRO BAPI_INCOMINGINVOICE_CREATE

    1. 业务处理(transaction)字段选择: 创建后续借记(subsequent debit)            ItemData                     DE_CRE_IN ...

  5. Python学习之路【第二篇】-pyc简介、Python常用的数据类型及其用法和常用运算符

    1.pyc简介 python程序在运行时也有编译过程,编译后会产生.pyc文件.这是一种由python虚拟机执行的二进制文件(字节码),用于保存内存中PyCodeObject,以便加快程序的加载运行. ...

  6. qt资源加载出错

    -1: error: No rule to make target '../InteractivePlayer/style.qss', needed by 'debug/qrc_res.cpp'.  ...

  7. I/O复用(select)——回声服务器端/客户端

    一.select 使用select函数可以将多个文件描述符集中到一起统一监视,监视事件如下: 是否存在待读取数据. 是否可传输无阻塞传输数据. 是否发生异常. 将关心上述3种事件的文件描述发分别注册到 ...

  8. 【Query】使用java对mysql数据库进行查询操作

    操作步骤: 1.加载数据库驱动(先在工程里加载数据库对应的驱动包) 2.获取连接 3.根据连接建立一个可执行sql的对象 4.执行sql语句 5.关闭连接 代码: package database; ...

  9. Android 音视频深入 四 录视频MP4(附源码下载)

    本篇项目地址,名字是<录音视频(有的播放器不能放,而且没有时长显示)>,求star https://github.com/979451341/Audio-and-video-learnin ...

  10. ldap+flask+python2实现统一认证里面的那些编码神坑

    首先想吐槽下,直接接手别人的项目,而且是经过四五个人手的项目,是怎么个痛苦.两三套代码django.flask.tornado应有尽有,代码里,掰开手指头就可数的全英文注释,几台服务器没交接清楚,所有 ...