luogu P1357 花园
先考虑朴素dp,设\(f_{i,j}\)表示推了\(i\)次,前\(m\)个点的状态为二进制数\(j\)(这里记放C为1),转移的时候枚举下一位放什么,还要考虑是否满足C的个数\(\leq k\)
不过这个东西是环形的,考虑拆环为链,即找出所有合法状态\(j\),对于每个\(j\)初始化\(f_{0,j}=1\),然后从\(m+1\)位开始放,推\(n\)次,这个\(j\)的答案为\(f_{n,j}\)
因为\(n\)很大,同时\(j\)状态不超过32个,矩乘优化即可
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5)
using namespace std;
const int N=35,mod=1000000007;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct martix
{
int n,m;
LL a[N][N];
martix(){}
il void clear(int nn,int mm)
{
n=nn,m=mm;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
a[i][j]=0;
}
il void init()
{
for(int i=0;i<n;i++) a[i][i]=1;
}
martix operator * (const martix &b) const
{
martix an;
an.clear(n,b.m);
for(int i=0;i<n;i++)
for(int j=0;j<b.m;j++)
for(int k=0;k<m;k++)
an.a[i][j]=(an.a[i][j]+a[i][k]*b.a[k][j]%mod)%mod;
return an;
}
martix operator ^ (const LL &bb) const
{
martix an,a;
an.clear(n,m),an.init(),a=*this;
LL b=bb;
while(b)
{
if(b&1) an=an*a;
a=a*a;
b>>=1;
}
return an;
}
}a,b;
LL n;
int nn,m,k;
il void initt()
{
b.clear(nn,nn);
for(int i=0;i<nn;i++)
{
int ii=(i|1)^1,cn=0;
while(ii) ++cn,ii-=ii&(-ii);
int j=i>>1;
if(cn<=k) b.a[i][j]=1;
if(cn+1<=k) b.a[i][j|(nn>>1)]=1;
}
b=b^n;
}
int main()
{
n=rd(),m=rd(),k=rd();
nn=1<<m;
initt();
LL ans=0;
for(int i=0;i<nn;i++)
{
a.clear(1,nn);
a.a[0][i]=1;
a=a*b;
ans=(ans+a.a[0][i])%mod;
}
printf("%lld\n",ans);
return 0;
}
luogu P1357 花园的更多相关文章
- 【题解】Luogu P1357 花园
原题传送门 我们先将花圃断环为链,并将\([1,m]\)复制一份到\([n+1,n+m]\),最后要求\([1,n+m]\)是合法序列且\([1,m]\)与\([n+1,n+m]\)相等的序列的数量即 ...
- 洛谷 P1357 花园 解题报告
P1357 花园 题目描述 小\(L\)有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为\(1~N(2<=N<=10^{15})\).他的环形花园每天都会换一个新花样,但他的花园都不 ...
- 题解:洛谷P1357 花园
题解:洛谷P1357 花园 Description 小 L 有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为 \(1∼n\).花园 \(1\) 和 \(n\) 是相邻的. 他的环形花园每天都会换 ...
- 洛谷P1357 花园(状态压缩 + 矩阵快速幂加速递推)
题目链接:传送门 题目: 题目描述 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(<=N<=^).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻 ...
- P1357 花园 状压 矩阵快速幂
题意 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(2<=N<=10^15).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻M(2<=M& ...
- [洛谷P1357] 花园
题目类型:状压\(DP\) -> 矩阵乘法 绝妙然而思维难度极其大的一道好题! 传送门:>Here< 题意:有一个环形花圃,可以种两种花:0或1. 要求任意相邻的\(M\)个花中1的 ...
- P1357 花园
洛咕原题 题解 状压dp+矩乘 首先看到题目说M<=5,这么小的数据明显可以用状压保存相邻状态,于是可以得到一个80分的dp: 先筛出所有可用的状态,然后建立一个矩阵保存可转移的状态,再然后把每 ...
- 【洛谷】P1357 花园(状压+矩阵快速幂)
题目 传送门:QWQ 分析 因为m很小,考虑把所有状态压成m位二进制数. 那么总状态数小于$ 2^5 $. 如果状态$ i $能转移到$ j $,那么扔进一个矩阵,n次方快速幂一下. 答案是对角线之和 ...
- Luogu 1357 花园
发现$m$很小,直接状压起来,可以处理出一开始的合法的状态. 对于每一个合法的状态,可以处理出它的转移方向,即在后面填一个$1$或者填一个$0$,反着处理比较方便. 考虑一下环的情况,在这题中有一个小 ...
随机推荐
- linux ssh和scp消除每次问yes/no
ssh 10.11.3.61The authenticity of host '10.11.3.61 (10.11.3.61)' can't be established.RSA key finger ...
- BZOJ3526[Poi2014]Card——线段树合并
题目描述 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].现在,有m个熊孩子来破坏你的卡片了!第i个熊孩子会交换c[i]和d[i]两个位置上的卡片. ...
- BZOJ3530[Sdoi2014]数数——AC自动机+数位DP
题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...
- android 开发中 sdk 无法更新
现在用到android 的多个版本适配 , 换了个新环境 , 重新配置了android 的开发环境,哪想到遇到了很多小问题. 今天又遇到了 android sdk manager 无法更新的问题. ...
- 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)
[BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...
- 【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)
[BZOJ2427][HAOI2010]软件安装(动态规划,Tarjan) 题面 BZOJ 洛谷 题解 看到这类题目就应该要意识到依赖关系显然是可以成环的. 注意到这样一个性质,依赖关系最多只有一个, ...
- BZOJ3235 [Ahoi2013]好方的蛇 【单调栈 + dp】
题目链接 BZOJ3235 题解 求出每个点为顶点,分别求出左上,左下,右上,右下的矩形的个数\(g[i][j]\) 并预处理出\(f[i][j]\)表示点\((i,j)\)到四个角的矩形内合法矩形个 ...
- 求n(n>=2)以内的质数/判断一个数是否质数——方法+细节优化
#include <stdio.h> #include <stdlib.h> //判断i是否质数,需要判断i能否被(long)sqrt(i)以内的数整除 //若i能被其中一个质 ...
- 代码大片出现报错,请重新编译——Clean
工作空间中项目莫名大片报错,可能是各种意外原因导致的代码编译错误,可以选 菜单栏的 Project,Clean一下全部项目,系统会自动重新编译所有项目,有时会有奇效.
- advancedsearch.php织梦高级自定义模型字段无法调用解决方案
advancedsearch.php织梦dedecms 高级自定义模型字段无法调用解决方案 ,具体步骤如下: 1 打开修改puls/advancedsearch.php文件,找到复制代码(不同版本可 ...