这里的一些东西只是将过去已有的东西用PGM解释了一遍,但优势还是明显的,对整体认识有帮助。

Video: https://www.youtube.com/watch?v=ogs4Oj8KahQ&index=13&list=PL50E6E80E8525B59C

3 - 1 - Overview of Template Models

3 - 2 - Temporal Models

3 - 3 - Temporal Models - HMMs

3 - 4 - Plate Models (以下主要是此内容)

DBM

动态BM其实就是加入了时间这个变脸,然后随着时间的变化,原有的节点会产生状态转移这样的过程。

Nested Plates & Overlapping Plates

  

左:一个courses框框可以包含很多个students框框。

右:如此一来,Courses框框的Difficulty就不是共享模式了。

结合后的效果如下:

意义在于:

Parameters and structure are reused within a BN and across different BNs.

Collective Inference

一个推断思维的例子:

学生选择第二第三课程,分低;但他的第一课程,分高;

那么,第一课程可能真的简单。

Plate notation

In Bayesian inferenceplate notation is a method of representing variables that repeat in a graphical model.

Instead of drawing each repeated variable individually, a plate or rectangle is used to group variables into a subgraph that repeat together, and a number is drawn on the plate to represent the number of repetitions of the subgraph in the plate.

The assumptions are that

    • the subgraph is duplicated that many times,
    • the variables in the subgraph are indexed by the repetition number, and
    • any links that cross a plate boundary are replicated once for each subgraph repetition.

In this example, we consider Latent Dirichlet allocation, a Bayesian network that models how documents in a corpus are topically related. There are two variables not in any plate:

    • α is the parameter of the uniform Dirichlet prior on the per-document topic distributions,
    • β is the parameter of the uniform Dirichlet prior on the per-topic word distribution.

The outermost plate represents all the variables related to a specific document, including , the topic distribution for document i.

The M in the corner of the plate indicates that the variables inside are repeated M times, once for each document.

The inner plate represents the variables associated with each of the  words in document i:  is the topic for the jth word in document i, and  is the actual word used.

The N in the corner represents the repetition of the variables in the inner plate  times, once for each word in document i.

    • The circle representing the individual words is shaded, indicating that each  is observable, and
    • the other circles are empty, indicating that the other variables are latent variables.

The directed edges between variables indicate dependencies between the variables: for example, each  depends on  and β.

[PGM] Temporal Models的更多相关文章

  1. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  2. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  3. A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems

    A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems Recurrent neural netw ...

  4. 论文笔记:语音情感识别(三)手工特征+CRNN

    一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...

  5. Machine Learning Basic Knowledge

    常用的数据挖掘&机器学习知识(点) Basis(基础): MSE(MeanSquare Error 均方误差),LMS(Least MeanSquare 最小均方),LSM(Least Squ ...

  6. stanford推荐阅读目录

    stanford deep learning 网站上推荐的阅读目录: UFLDL Recommended Readings   If you're learning about UFLDL (Unsu ...

  7. [PGM] What is Probabalistic Graphical Models

    学术潜规则: 概率图模型提出的意义在于将过去看似零散的topic/model以一种统一的方式串联了起来,它便于从整体上看待这些问题,而非具体解决了某个细节. 举个例子:梯度下降,并非解决神经网络收敛问 ...

  8. 使用 LaTeX 绘制 PGM(Probabilistic Graphical Models)中的贝叶斯网络(bayesian networks)

    Software for drawing bayesian networks (graphical models) 这里需要调用 latex 中的绘图库:TikZ and PGF. 注意,下述 tex ...

  9. PRML读书会第八章 Graphical Models(贝叶斯网络,马尔科夫随机场)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断in ...

随机推荐

  1. Python初识及变量

    第一句python,输出 Hello world #!/usr/bin/evn python #指定解释器 #_*_ coding:utf- _*_ #指定编码 print("hello w ...

  2. FCKEditor在IE10下的不兼容问题解决方法

    环境介绍:FCKEditor 版本 2.x.x 问题:IE10 下FCKEditor不兼容,显示不出来 关键词:不同于其他方法之处是第一个关键点,其他网友的正则表达式不对 解放方法:(可以直接< ...

  3. windows 64位环境下php执行环境部署配置

    1.下载安装包 地址可以网上找,我下载的是php-5.6.27-Win32-VC11-x64.zip 2.解压安装包,我的解压到D:\tools\php5.6 3.配置php.ini 在解压的目录中, ...

  4. JS中JSON.parse和eval的异同

    1.相同点 JSON.parse和eval函数都可将一段json字符串转换为json对象,如: var json = '{"intro":[{"name":&q ...

  5. .Net性能的方方面面(必看官方经典)

    更多性能提高相关文章,必看 https://msdn.microsoft.com/en-us/library/hh917314.aspx Chapter 1 - Fundamentals of Eng ...

  6. java中四舍五入——double转BigDecimal的精度损失问题

    代码: double d = -123456789012345.3426;//5898895455898954895989; NumberFormat nf = new DecimalFormat(& ...

  7. UVA11137 Ingenuous Cubrency 完全背包 递推式子

    做数论都做傻了,这道题目 有推荐,当时的分类放在了递推里面,然后我就不停的去推啊推啊,后来推出来了,可是小一点的数 输出答案都没问题,大一点的数 输出答案就是错的,实在是不知道为什么,后来又不停的看, ...

  8. js金额数字格式化实现代码(三位加逗号处理保留两位置小数)

    工作中很常用的东西: 例1,使数字1111111变成11,111,111.00,保留两位小数. <html> <head> <script type="text ...

  9. Java调用Elasticsearch API查询及matchPhraseQuery和matchQuery的区别

    一.引入依赖 <!--Elasticsearch client--> <!-- https://mvnrepository.com/artifact/org.elasticsearc ...

  10. weex开发错误汇总

    weex run serve 报UglifyJS错 ANDROID_HOME环境变量 weex build android需要ANDROID_HOME, 请配置 D:\adt-windows-x86_ ...