Spark2 Random Forests 随机森林
随机森林是决策树的集合。 随机森林结合许多决策树,以减少过度拟合的风险。 spark.ml实现支持随机森林,使用连续和分类特征,做二分类和多分类以及回归。
导入包
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Column
import org.apache.spark.sql.DataFrameReader
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.DataFrameStatFunctions
import org.apache.spark.sql.functions._ import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.feature.{ IndexToString, StringIndexer, VectorIndexer }
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{ RandomForestClassificationModel, RandomForestClassifier }
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
导入源数据
// affairs:一年来婚外情的频率
// gender:性别
// age:年龄
// yearsmarried:婚龄
// children:是否有小孩
// religiousness:宗教信仰程度(5分制,1分表示反对,5分表示非常信仰)
// education:学历
// occupation:职业(逆向编号的戈登7种分类)
// rating:对婚姻的自我评分(5分制,1表示非常不幸福,5表示非常幸福) val spark = SparkSession.builder().appName("Spark Random Forest Classifier").config("spark.some.config.option", "some-value").getOrCreate() // For implicit conversions like converting RDDs to DataFrames
import spark.implicits._ val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(
(0, "male", 37, 10, "no", 3, 18, 7, 4),
(0, "female", 27, 4, "no", 4, 14, 6, 4),
(0, "female", 32, 15, "yes", 1, 12, 1, 4),
(0, "male", 57, 15, "yes", 5, 18, 6, 5),
(0, "male", 22, 0.75, "no", 2, 17, 6, 3),
(0, "female", 32, 1.5, "no", 2, 17, 5, 5),
(0, "female", 22, 0.75, "no", 2, 12, 1, 3),
(0, "male", 57, 15, "yes", 2, 14, 4, 4),
(0, "female", 32, 15, "yes", 4, 16, 1, 2),
(0, "male", 22, 1.5, "no", 4, 14, 4, 5),
(0, "male", 37, 15, "yes", 2, 20, 7, 2),
(0, "male", 27, 4, "yes", 4, 18, 6, 4),
(0, "male", 47, 15, "yes", 5, 17, 6, 4),
(0, "female", 22, 1.5, "no", 2, 17, 5, 4),
(0, "female", 27, 4, "no", 4, 14, 5, 4),
(0, "female", 37, 15, "yes", 1, 17, 5, 5),
(0, "female", 37, 15, "yes", 2, 18, 4, 3),
(0, "female", 22, 0.75, "no", 3, 16, 5, 4),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 2, 14, 1, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 4, 16, 5, 4),
(0, "female", 32, 10, "yes", 3, 14, 1, 5),
(0, "male", 37, 4, "yes", 2, 20, 6, 4),
(0, "female", 22, 1.5, "no", 2, 18, 5, 5),
(0, "female", 27, 7, "no", 4, 16, 1, 5),
(0, "male", 42, 15, "yes", 5, 20, 6, 4),
(0, "male", 27, 4, "yes", 3, 16, 5, 5),
(0, "female", 27, 4, "yes", 3, 17, 5, 4),
(0, "male", 42, 15, "yes", 4, 20, 6, 3),
(0, "female", 22, 1.5, "no", 3, 16, 5, 5),
(0, "male", 27, 0.417, "no", 4, 17, 6, 4),
(0, "female", 42, 15, "yes", 5, 14, 5, 4),
(0, "male", 32, 4, "yes", 1, 18, 6, 4),
(0, "female", 22, 1.5, "no", 4, 16, 5, 3),
(0, "female", 42, 15, "yes", 3, 12, 1, 4),
(0, "female", 22, 4, "no", 4, 17, 5, 5),
(0, "male", 22, 1.5, "yes", 1, 14, 3, 5),
(0, "female", 22, 0.75, "no", 3, 16, 1, 5),
(0, "male", 32, 10, "yes", 5, 20, 6, 5),
(0, "male", 52, 15, "yes", 5, 18, 6, 3),
(0, "female", 22, 0.417, "no", 5, 14, 1, 4),
(0, "female", 27, 4, "yes", 2, 18, 6, 1),
(0, "female", 32, 7, "yes", 5, 17, 5, 3),
(0, "male", 22, 4, "no", 3, 16, 5, 5),
(0, "female", 27, 7, "yes", 4, 18, 6, 5),
(0, "female", 42, 15, "yes", 2, 18, 5, 4),
(0, "male", 27, 1.5, "yes", 4, 16, 3, 5),
(0, "male", 42, 15, "yes", 2, 20, 6, 4),
(0, "female", 22, 0.75, "no", 5, 14, 3, 5),
(0, "male", 32, 7, "yes", 2, 20, 6, 4),
(0, "male", 27, 4, "yes", 5, 20, 6, 5),
(0, "male", 27, 10, "yes", 4, 20, 6, 4),
(0, "male", 22, 4, "no", 1, 18, 5, 5),
(0, "female", 37, 15, "yes", 4, 14, 3, 1),
(0, "male", 22, 1.5, "yes", 5, 16, 4, 4),
(0, "female", 37, 15, "yes", 4, 17, 1, 5),
(0, "female", 27, 0.75, "no", 4, 17, 5, 4),
(0, "male", 32, 10, "yes", 4, 20, 6, 4),
(0, "female", 47, 15, "yes", 5, 14, 7, 2),
(0, "male", 37, 10, "yes", 3, 20, 6, 4),
(0, "female", 22, 0.75, "no", 2, 16, 5, 5),
(0, "male", 27, 4, "no", 2, 18, 4, 5),
(0, "male", 32, 7, "no", 4, 20, 6, 4),
(0, "male", 42, 15, "yes", 2, 17, 3, 5),
(0, "male", 37, 10, "yes", 4, 20, 6, 4),
(0, "female", 47, 15, "yes", 3, 17, 6, 5),
(0, "female", 22, 1.5, "no", 5, 16, 5, 5),
(0, "female", 27, 1.5, "no", 2, 16, 6, 4),
(0, "female", 27, 4, "no", 3, 17, 5, 5),
(0, "female", 32, 10, "yes", 5, 14, 4, 5),
(0, "female", 22, 0.125, "no", 2, 12, 5, 5),
(0, "male", 47, 15, "yes", 4, 14, 4, 3),
(0, "male", 32, 15, "yes", 1, 14, 5, 5),
(0, "male", 27, 7, "yes", 4, 16, 5, 5),
(0, "female", 22, 1.5, "yes", 3, 16, 5, 5),
(0, "male", 27, 4, "yes", 3, 17, 6, 5),
(0, "female", 22, 1.5, "no", 3, 16, 5, 5),
(0, "male", 57, 15, "yes", 2, 14, 7, 2),
(0, "male", 17.5, 1.5, "yes", 3, 18, 6, 5),
(0, "male", 57, 15, "yes", 4, 20, 6, 5),
(0, "female", 22, 0.75, "no", 2, 16, 3, 4),
(0, "male", 42, 4, "no", 4, 17, 3, 3),
(0, "female", 22, 1.5, "yes", 4, 12, 1, 5),
(0, "female", 22, 0.417, "no", 1, 17, 6, 4),
(0, "female", 32, 15, "yes", 4, 17, 5, 5),
(0, "female", 27, 1.5, "no", 3, 18, 5, 2),
(0, "female", 22, 1.5, "yes", 3, 14, 1, 5),
(0, "female", 37, 15, "yes", 3, 14, 1, 4),
(0, "female", 32, 15, "yes", 4, 14, 3, 4),
(0, "male", 37, 10, "yes", 2, 14, 5, 3),
(0, "male", 37, 10, "yes", 4, 16, 5, 4),
(0, "male", 57, 15, "yes", 5, 20, 5, 3),
(0, "male", 27, 0.417, "no", 1, 16, 3, 4),
(0, "female", 42, 15, "yes", 5, 14, 1, 5),
(0, "male", 57, 15, "yes", 3, 16, 6, 1),
(0, "male", 37, 10, "yes", 1, 16, 6, 4),
(0, "male", 37, 15, "yes", 3, 17, 5, 5),
(0, "male", 37, 15, "yes", 4, 20, 6, 5),
(0, "female", 27, 10, "yes", 5, 14, 1, 5),
(0, "male", 37, 10, "yes", 2, 18, 6, 4),
(0, "female", 22, 0.125, "no", 4, 12, 4, 5),
(0, "male", 57, 15, "yes", 5, 20, 6, 5),
(0, "female", 37, 15, "yes", 4, 18, 6, 4),
(0, "male", 22, 4, "yes", 4, 14, 6, 4),
(0, "male", 27, 7, "yes", 4, 18, 5, 4),
(0, "male", 57, 15, "yes", 4, 20, 5, 4),
(0, "male", 32, 15, "yes", 3, 14, 6, 3),
(0, "female", 22, 1.5, "no", 2, 14, 5, 4),
(0, "female", 32, 7, "yes", 4, 17, 1, 5),
(0, "female", 37, 15, "yes", 4, 17, 6, 5),
(0, "female", 32, 1.5, "no", 5, 18, 5, 5),
(0, "male", 42, 10, "yes", 5, 20, 7, 4),
(0, "female", 27, 7, "no", 3, 16, 5, 4),
(0, "male", 37, 15, "no", 4, 20, 6, 5),
(0, "male", 37, 15, "yes", 4, 14, 3, 2),
(0, "male", 32, 10, "no", 5, 18, 6, 4),
(0, "female", 22, 0.75, "no", 4, 16, 1, 5),
(0, "female", 27, 7, "yes", 4, 12, 2, 4),
(0, "female", 27, 7, "yes", 2, 16, 2, 5),
(0, "female", 42, 15, "yes", 5, 18, 5, 4),
(0, "male", 42, 15, "yes", 4, 17, 5, 3),
(0, "female", 27, 7, "yes", 2, 16, 1, 2),
(0, "female", 22, 1.5, "no", 3, 16, 5, 5),
(0, "male", 37, 15, "yes", 5, 20, 6, 5),
(0, "female", 22, 0.125, "no", 2, 14, 4, 5),
(0, "male", 27, 1.5, "no", 4, 16, 5, 5),
(0, "male", 32, 1.5, "no", 2, 18, 6, 5),
(0, "male", 27, 1.5, "no", 2, 17, 6, 5),
(0, "female", 27, 10, "yes", 4, 16, 1, 3),
(0, "male", 42, 15, "yes", 4, 18, 6, 5),
(0, "female", 27, 1.5, "no", 2, 16, 6, 5),
(0, "male", 27, 4, "no", 2, 18, 6, 3),
(0, "female", 32, 10, "yes", 3, 14, 5, 3),
(0, "female", 32, 15, "yes", 3, 18, 5, 4),
(0, "female", 22, 0.75, "no", 2, 18, 6, 5),
(0, "female", 37, 15, "yes", 2, 16, 1, 4),
(0, "male", 27, 4, "yes", 4, 20, 5, 5),
(0, "male", 27, 4, "no", 1, 20, 5, 4),
(0, "female", 27, 10, "yes", 2, 12, 1, 4),
(0, "female", 32, 15, "yes", 5, 18, 6, 4),
(0, "male", 27, 7, "yes", 5, 12, 5, 3),
(0, "male", 52, 15, "yes", 2, 18, 5, 4),
(0, "male", 27, 4, "no", 3, 20, 6, 3),
(0, "male", 37, 4, "yes", 1, 18, 5, 4),
(0, "male", 27, 4, "yes", 4, 14, 5, 4),
(0, "female", 52, 15, "yes", 5, 12, 1, 3),
(0, "female", 57, 15, "yes", 4, 16, 6, 4),
(0, "male", 27, 7, "yes", 1, 16, 5, 4),
(0, "male", 37, 7, "yes", 4, 20, 6, 3),
(0, "male", 22, 0.75, "no", 2, 14, 4, 3),
(0, "male", 32, 4, "yes", 2, 18, 5, 3),
(0, "male", 37, 15, "yes", 4, 20, 6, 3),
(0, "male", 22, 0.75, "yes", 2, 14, 4, 3),
(0, "male", 42, 15, "yes", 4, 20, 6, 3),
(0, "female", 52, 15, "yes", 5, 17, 1, 1),
(0, "female", 37, 15, "yes", 4, 14, 1, 2),
(0, "male", 27, 7, "yes", 4, 14, 5, 3),
(0, "male", 32, 4, "yes", 2, 16, 5, 5),
(0, "female", 27, 4, "yes", 2, 18, 6, 5),
(0, "female", 27, 4, "yes", 2, 18, 5, 5),
(0, "male", 37, 15, "yes", 5, 18, 6, 5),
(0, "female", 47, 15, "yes", 5, 12, 5, 4),
(0, "female", 32, 10, "yes", 3, 17, 1, 4),
(0, "female", 27, 1.5, "yes", 4, 17, 1, 2),
(0, "female", 57, 15, "yes", 2, 18, 5, 2),
(0, "female", 22, 1.5, "no", 4, 14, 5, 4),
(0, "male", 42, 15, "yes", 3, 14, 3, 4),
(0, "male", 57, 15, "yes", 4, 9, 2, 2),
(0, "male", 57, 15, "yes", 4, 20, 6, 5),
(0, "female", 22, 0.125, "no", 4, 14, 4, 5),
(0, "female", 32, 10, "yes", 4, 14, 1, 5),
(0, "female", 42, 15, "yes", 3, 18, 5, 4),
(0, "female", 27, 1.5, "no", 2, 18, 6, 5),
(0, "male", 32, 0.125, "yes", 2, 18, 5, 2),
(0, "female", 27, 4, "no", 3, 16, 5, 4),
(0, "female", 27, 10, "yes", 2, 16, 1, 4),
(0, "female", 32, 7, "yes", 4, 16, 1, 3),
(0, "female", 37, 15, "yes", 4, 14, 5, 4),
(0, "female", 42, 15, "yes", 5, 17, 6, 2),
(0, "male", 32, 1.5, "yes", 4, 14, 6, 5),
(0, "female", 32, 4, "yes", 3, 17, 5, 3),
(0, "female", 37, 7, "no", 4, 18, 5, 5),
(0, "female", 22, 0.417, "yes", 3, 14, 3, 5),
(0, "female", 27, 7, "yes", 4, 14, 1, 5),
(0, "male", 27, 0.75, "no", 3, 16, 5, 5),
(0, "male", 27, 4, "yes", 2, 20, 5, 5),
(0, "male", 32, 10, "yes", 4, 16, 4, 5),
(0, "male", 32, 15, "yes", 1, 14, 5, 5),
(0, "male", 22, 0.75, "no", 3, 17, 4, 5),
(0, "female", 27, 7, "yes", 4, 17, 1, 4),
(0, "male", 27, 0.417, "yes", 4, 20, 5, 4),
(0, "male", 37, 15, "yes", 4, 20, 5, 4),
(0, "female", 37, 15, "yes", 2, 14, 1, 3),
(0, "male", 22, 4, "yes", 1, 18, 5, 4),
(0, "male", 37, 15, "yes", 4, 17, 5, 3),
(0, "female", 22, 1.5, "no", 2, 14, 4, 5),
(0, "male", 52, 15, "yes", 4, 14, 6, 2),
(0, "female", 22, 1.5, "no", 4, 17, 5, 5),
(0, "male", 32, 4, "yes", 5, 14, 3, 5),
(0, "male", 32, 4, "yes", 2, 14, 3, 5),
(0, "female", 22, 1.5, "no", 3, 16, 6, 5),
(0, "male", 27, 0.75, "no", 2, 18, 3, 3),
(0, "female", 22, 7, "yes", 2, 14, 5, 2),
(0, "female", 27, 0.75, "no", 2, 17, 5, 3),
(0, "female", 37, 15, "yes", 4, 12, 1, 2),
(0, "female", 22, 1.5, "no", 1, 14, 1, 5),
(0, "female", 37, 10, "no", 2, 12, 4, 4),
(0, "female", 37, 15, "yes", 4, 18, 5, 3),
(0, "female", 42, 15, "yes", 3, 12, 3, 3),
(0, "male", 22, 4, "no", 2, 18, 5, 5),
(0, "male", 52, 7, "yes", 2, 20, 6, 2),
(0, "male", 27, 0.75, "no", 2, 17, 5, 5),
(0, "female", 27, 4, "no", 2, 17, 4, 5),
(0, "male", 42, 1.5, "no", 5, 20, 6, 5),
(0, "male", 22, 1.5, "no", 4, 17, 6, 5),
(0, "male", 22, 4, "no", 4, 17, 5, 3),
(0, "female", 22, 4, "yes", 1, 14, 5, 4),
(0, "male", 37, 15, "yes", 5, 20, 4, 5),
(0, "female", 37, 10, "yes", 3, 16, 6, 3),
(0, "male", 42, 15, "yes", 4, 17, 6, 5),
(0, "female", 47, 15, "yes", 4, 17, 5, 5),
(0, "male", 22, 1.5, "no", 4, 16, 5, 4),
(0, "female", 32, 10, "yes", 3, 12, 1, 4),
(0, "female", 22, 7, "yes", 1, 14, 3, 5),
(0, "female", 32, 10, "yes", 4, 17, 5, 4),
(0, "male", 27, 1.5, "yes", 2, 16, 2, 4),
(0, "male", 37, 15, "yes", 4, 14, 5, 5),
(0, "male", 42, 4, "yes", 3, 14, 4, 5),
(0, "female", 37, 15, "yes", 5, 14, 5, 4),
(0, "female", 32, 7, "yes", 4, 17, 5, 5),
(0, "female", 42, 15, "yes", 4, 18, 6, 5),
(0, "male", 27, 4, "no", 4, 18, 6, 4),
(0, "male", 22, 0.75, "no", 4, 18, 6, 5),
(0, "male", 27, 4, "yes", 4, 14, 5, 3),
(0, "female", 22, 0.75, "no", 5, 18, 1, 5),
(0, "female", 52, 15, "yes", 5, 9, 5, 5),
(0, "male", 32, 10, "yes", 3, 14, 5, 5),
(0, "female", 37, 15, "yes", 4, 16, 4, 4),
(0, "male", 32, 7, "yes", 2, 20, 5, 4),
(0, "female", 42, 15, "yes", 3, 18, 1, 4),
(0, "male", 32, 15, "yes", 1, 16, 5, 5),
(0, "male", 27, 4, "yes", 3, 18, 5, 5),
(0, "female", 32, 15, "yes", 4, 12, 3, 4),
(0, "male", 22, 0.75, "yes", 3, 14, 2, 4),
(0, "female", 22, 1.5, "no", 3, 16, 5, 3),
(0, "female", 42, 15, "yes", 4, 14, 3, 5),
(0, "female", 52, 15, "yes", 3, 16, 5, 4),
(0, "male", 37, 15, "yes", 5, 20, 6, 4),
(0, "female", 47, 15, "yes", 4, 12, 2, 3),
(0, "male", 57, 15, "yes", 2, 20, 6, 4),
(0, "male", 32, 7, "yes", 4, 17, 5, 5),
(0, "female", 27, 7, "yes", 4, 17, 1, 4),
(0, "male", 22, 1.5, "no", 1, 18, 6, 5),
(0, "female", 22, 4, "yes", 3, 9, 1, 4),
(0, "female", 22, 1.5, "no", 2, 14, 1, 5),
(0, "male", 42, 15, "yes", 2, 20, 6, 4),
(0, "male", 57, 15, "yes", 4, 9, 2, 4),
(0, "female", 27, 7, "yes", 2, 18, 1, 5),
(0, "female", 22, 4, "yes", 3, 14, 1, 5),
(0, "male", 37, 15, "yes", 4, 14, 5, 3),
(0, "male", 32, 7, "yes", 1, 18, 6, 4),
(0, "female", 22, 1.5, "no", 2, 14, 5, 5),
(0, "female", 22, 1.5, "yes", 3, 12, 1, 3),
(0, "male", 52, 15, "yes", 2, 14, 5, 5),
(0, "female", 37, 15, "yes", 2, 14, 1, 1),
(0, "female", 32, 10, "yes", 2, 14, 5, 5),
(0, "male", 42, 15, "yes", 4, 20, 4, 5),
(0, "female", 27, 4, "yes", 3, 18, 4, 5),
(0, "male", 37, 15, "yes", 4, 20, 6, 5),
(0, "male", 27, 1.5, "no", 3, 18, 5, 5),
(0, "female", 22, 0.125, "no", 2, 16, 6, 3),
(0, "male", 32, 10, "yes", 2, 20, 6, 3),
(0, "female", 27, 4, "no", 4, 18, 5, 4),
(0, "female", 27, 7, "yes", 2, 12, 5, 1),
(0, "male", 32, 4, "yes", 5, 18, 6, 3),
(0, "female", 37, 15, "yes", 2, 17, 5, 5),
(0, "male", 47, 15, "no", 4, 20, 6, 4),
(0, "male", 27, 1.5, "no", 1, 18, 5, 5),
(0, "male", 37, 15, "yes", 4, 20, 6, 4),
(0, "female", 32, 15, "yes", 4, 18, 1, 4),
(0, "female", 32, 7, "yes", 4, 17, 5, 4),
(0, "female", 42, 15, "yes", 3, 14, 1, 3),
(0, "female", 27, 7, "yes", 3, 16, 1, 4),
(0, "male", 27, 1.5, "no", 3, 16, 4, 2),
(0, "male", 22, 1.5, "no", 3, 16, 3, 5),
(0, "male", 27, 4, "yes", 3, 16, 4, 2),
(0, "female", 27, 7, "yes", 3, 12, 1, 2),
(0, "female", 37, 15, "yes", 2, 18, 5, 4),
(0, "female", 37, 7, "yes", 3, 14, 4, 4),
(0, "male", 22, 1.5, "no", 2, 16, 5, 5),
(0, "male", 37, 15, "yes", 5, 20, 5, 4),
(0, "female", 22, 1.5, "no", 4, 16, 5, 3),
(0, "female", 32, 10, "yes", 4, 16, 1, 5),
(0, "male", 27, 4, "no", 2, 17, 5, 3),
(0, "female", 22, 0.417, "no", 4, 14, 5, 5),
(0, "female", 27, 4, "no", 2, 18, 5, 5),
(0, "male", 37, 15, "yes", 4, 18, 5, 3),
(0, "male", 37, 10, "yes", 5, 20, 7, 4),
(0, "female", 27, 7, "yes", 2, 14, 4, 2),
(0, "male", 32, 4, "yes", 2, 16, 5, 5),
(0, "male", 32, 4, "yes", 2, 16, 6, 4),
(0, "male", 22, 1.5, "no", 3, 18, 4, 5),
(0, "female", 22, 4, "yes", 4, 14, 3, 4),
(0, "female", 17.5, 0.75, "no", 2, 18, 5, 4),
(0, "male", 32, 10, "yes", 4, 20, 4, 5),
(0, "female", 32, 0.75, "no", 5, 14, 3, 3),
(0, "male", 37, 15, "yes", 4, 17, 5, 3),
(0, "male", 32, 4, "no", 3, 14, 4, 5),
(0, "female", 27, 1.5, "no", 2, 17, 3, 2),
(0, "female", 22, 7, "yes", 4, 14, 1, 5),
(0, "male", 47, 15, "yes", 5, 14, 6, 5),
(0, "male", 27, 4, "yes", 1, 16, 4, 4),
(0, "female", 37, 15, "yes", 5, 14, 1, 3),
(0, "male", 42, 4, "yes", 4, 18, 5, 5),
(0, "female", 32, 4, "yes", 2, 14, 1, 5),
(0, "male", 52, 15, "yes", 2, 14, 7, 4),
(0, "female", 22, 1.5, "no", 2, 16, 1, 4),
(0, "male", 52, 15, "yes", 4, 12, 2, 4),
(0, "female", 22, 0.417, "no", 3, 17, 1, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "male", 27, 4, "yes", 4, 20, 6, 4),
(0, "female", 32, 15, "yes", 4, 14, 1, 5),
(0, "female", 27, 1.5, "no", 2, 16, 3, 5),
(0, "male", 32, 4, "no", 1, 20, 6, 5),
(0, "male", 37, 15, "yes", 3, 20, 6, 4),
(0, "female", 32, 10, "no", 2, 16, 6, 5),
(0, "female", 32, 10, "yes", 5, 14, 5, 5),
(0, "male", 37, 1.5, "yes", 4, 18, 5, 3),
(0, "male", 32, 1.5, "no", 2, 18, 4, 4),
(0, "female", 32, 10, "yes", 4, 14, 1, 4),
(0, "female", 47, 15, "yes", 4, 18, 5, 4),
(0, "female", 27, 10, "yes", 5, 12, 1, 5),
(0, "male", 27, 4, "yes", 3, 16, 4, 5),
(0, "female", 37, 15, "yes", 4, 12, 4, 2),
(0, "female", 27, 0.75, "no", 4, 16, 5, 5),
(0, "female", 37, 15, "yes", 4, 16, 1, 5),
(0, "female", 32, 15, "yes", 3, 16, 1, 5),
(0, "female", 27, 10, "yes", 2, 16, 1, 5),
(0, "male", 27, 7, "no", 2, 20, 6, 5),
(0, "female", 37, 15, "yes", 2, 14, 1, 3),
(0, "male", 27, 1.5, "yes", 2, 17, 4, 4),
(0, "female", 22, 0.75, "yes", 2, 14, 1, 5),
(0, "male", 22, 4, "yes", 4, 14, 2, 4),
(0, "male", 42, 0.125, "no", 4, 17, 6, 4),
(0, "male", 27, 1.5, "yes", 4, 18, 6, 5),
(0, "male", 27, 7, "yes", 3, 16, 6, 3),
(0, "female", 52, 15, "yes", 4, 14, 1, 3),
(0, "male", 27, 1.5, "no", 5, 20, 5, 2),
(0, "female", 27, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 1.5, "no", 3, 17, 5, 5),
(0, "male", 22, 0.125, "no", 5, 16, 4, 4),
(0, "female", 27, 4, "yes", 4, 16, 1, 5),
(0, "female", 27, 4, "yes", 4, 12, 1, 5),
(0, "female", 47, 15, "yes", 2, 14, 5, 5),
(0, "female", 32, 15, "yes", 3, 14, 5, 3),
(0, "male", 42, 7, "yes", 2, 16, 5, 5),
(0, "male", 22, 0.75, "no", 4, 16, 6, 4),
(0, "male", 27, 0.125, "no", 3, 20, 6, 5),
(0, "male", 32, 10, "yes", 3, 20, 6, 5),
(0, "female", 22, 0.417, "no", 5, 14, 4, 5),
(0, "female", 47, 15, "yes", 5, 14, 1, 4),
(0, "female", 32, 10, "yes", 3, 14, 1, 5),
(0, "male", 57, 15, "yes", 4, 17, 5, 5),
(0, "male", 27, 4, "yes", 3, 20, 6, 5),
(0, "female", 32, 7, "yes", 4, 17, 1, 5),
(0, "female", 37, 10, "yes", 4, 16, 1, 5),
(0, "female", 32, 10, "yes", 1, 18, 1, 4),
(0, "female", 22, 4, "no", 3, 14, 1, 4),
(0, "female", 27, 7, "yes", 4, 14, 3, 2),
(0, "male", 57, 15, "yes", 5, 18, 5, 2),
(0, "male", 32, 7, "yes", 2, 18, 5, 5),
(0, "female", 27, 1.5, "no", 4, 17, 1, 3),
(0, "male", 22, 1.5, "no", 4, 14, 5, 5),
(0, "female", 22, 1.5, "yes", 4, 14, 5, 4),
(0, "female", 32, 7, "yes", 3, 16, 1, 5),
(0, "female", 47, 15, "yes", 3, 16, 5, 4),
(0, "female", 22, 0.75, "no", 3, 16, 1, 5),
(0, "female", 22, 1.5, "yes", 2, 14, 5, 5),
(0, "female", 27, 4, "yes", 1, 16, 5, 5),
(0, "male", 52, 15, "yes", 4, 16, 5, 5),
(0, "male", 32, 10, "yes", 4, 20, 6, 5),
(0, "male", 47, 15, "yes", 4, 16, 6, 4),
(0, "female", 27, 7, "yes", 2, 14, 1, 2),
(0, "female", 22, 1.5, "no", 4, 14, 4, 5),
(0, "female", 32, 10, "yes", 2, 16, 5, 4),
(0, "female", 22, 0.75, "no", 2, 16, 5, 4),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 42, 15, "yes", 3, 18, 6, 4),
(0, "female", 27, 7, "yes", 5, 14, 4, 5),
(0, "male", 42, 15, "yes", 4, 16, 4, 4),
(0, "female", 57, 15, "yes", 3, 18, 5, 2),
(0, "male", 42, 15, "yes", 3, 18, 6, 2),
(0, "female", 32, 7, "yes", 2, 14, 1, 2),
(0, "male", 22, 4, "no", 5, 12, 4, 5),
(0, "female", 22, 1.5, "no", 1, 16, 6, 5),
(0, "female", 22, 0.75, "no", 1, 14, 4, 5),
(0, "female", 32, 15, "yes", 4, 12, 1, 5),
(0, "male", 22, 1.5, "no", 2, 18, 5, 3),
(0, "male", 27, 4, "yes", 5, 17, 2, 5),
(0, "female", 27, 4, "yes", 4, 12, 1, 5),
(0, "male", 42, 15, "yes", 5, 18, 5, 4),
(0, "male", 32, 1.5, "no", 2, 20, 7, 3),
(0, "male", 57, 15, "no", 4, 9, 3, 1),
(0, "male", 37, 7, "no", 4, 18, 5, 5),
(0, "male", 52, 15, "yes", 2, 17, 5, 4),
(0, "male", 47, 15, "yes", 4, 17, 6, 5),
(0, "female", 27, 7, "no", 2, 17, 5, 4),
(0, "female", 27, 7, "yes", 4, 14, 5, 5),
(0, "female", 22, 4, "no", 2, 14, 3, 3),
(0, "male", 37, 7, "yes", 2, 20, 6, 5),
(0, "male", 27, 7, "no", 4, 12, 4, 3),
(0, "male", 42, 10, "yes", 4, 18, 6, 4),
(0, "female", 22, 1.5, "no", 3, 14, 1, 5),
(0, "female", 22, 4, "yes", 2, 14, 1, 3),
(0, "female", 57, 15, "no", 4, 20, 6, 5),
(0, "male", 37, 15, "yes", 4, 14, 4, 3),
(0, "female", 27, 7, "yes", 3, 18, 5, 5),
(0, "female", 17.5, 10, "no", 4, 14, 4, 5),
(0, "male", 22, 4, "yes", 4, 16, 5, 5),
(0, "female", 27, 4, "yes", 2, 16, 1, 4),
(0, "female", 37, 15, "yes", 2, 14, 5, 1),
(0, "female", 22, 1.5, "no", 5, 14, 1, 4),
(0, "male", 27, 7, "yes", 2, 20, 5, 4),
(0, "male", 27, 4, "yes", 4, 14, 5, 5),
(0, "male", 22, 0.125, "no", 1, 16, 3, 5),
(0, "female", 27, 7, "yes", 4, 14, 1, 4),
(0, "female", 32, 15, "yes", 5, 16, 5, 3),
(0, "male", 32, 10, "yes", 4, 18, 5, 4),
(0, "female", 32, 15, "yes", 2, 14, 3, 4),
(0, "female", 22, 1.5, "no", 3, 17, 5, 5),
(0, "male", 27, 4, "yes", 4, 17, 4, 4),
(0, "female", 52, 15, "yes", 5, 14, 1, 5),
(0, "female", 27, 7, "yes", 2, 12, 1, 2),
(0, "female", 27, 7, "yes", 3, 12, 1, 4),
(0, "female", 42, 15, "yes", 2, 14, 1, 4),
(0, "female", 42, 15, "yes", 4, 14, 5, 4),
(0, "male", 27, 7, "yes", 4, 14, 3, 3),
(0, "male", 27, 7, "yes", 2, 20, 6, 2),
(0, "female", 42, 15, "yes", 3, 12, 3, 3),
(0, "male", 27, 4, "yes", 3, 16, 3, 5),
(0, "female", 27, 7, "yes", 3, 14, 1, 4),
(0, "female", 22, 1.5, "no", 2, 14, 4, 5),
(0, "female", 27, 4, "yes", 4, 14, 1, 4),
(0, "female", 22, 4, "no", 4, 14, 5, 5),
(0, "female", 22, 1.5, "no", 2, 16, 4, 5),
(0, "male", 47, 15, "no", 4, 14, 5, 4),
(0, "male", 37, 10, "yes", 2, 18, 6, 2),
(0, "male", 37, 15, "yes", 3, 17, 5, 4),
(0, "female", 27, 4, "yes", 2, 16, 1, 4),
(3, "male", 27, 1.5, "no", 3, 18, 4, 4),
(3, "female", 27, 4, "yes", 3, 17, 1, 5),
(7, "male", 37, 15, "yes", 5, 18, 6, 2),
(12, "female", 32, 10, "yes", 3, 17, 5, 2),
(1, "male", 22, 0.125, "no", 4, 16, 5, 5),
(1, "female", 22, 1.5, "yes", 2, 14, 1, 5),
(12, "male", 37, 15, "yes", 4, 14, 5, 2),
(7, "female", 22, 1.5, "no", 2, 14, 3, 4),
(2, "male", 37, 15, "yes", 2, 18, 6, 4),
(3, "female", 32, 15, "yes", 4, 12, 3, 2),
(1, "female", 37, 15, "yes", 4, 14, 4, 2),
(7, "female", 42, 15, "yes", 3, 17, 1, 4),
(12, "female", 42, 15, "yes", 5, 9, 4, 1),
(12, "male", 37, 10, "yes", 2, 20, 6, 2),
(12, "female", 32, 15, "yes", 3, 14, 1, 2),
(3, "male", 27, 4, "no", 1, 18, 6, 5),
(7, "male", 37, 10, "yes", 2, 18, 7, 3),
(7, "female", 27, 4, "no", 3, 17, 5, 5),
(1, "male", 42, 15, "yes", 4, 16, 5, 5),
(1, "female", 47, 15, "yes", 5, 14, 4, 5),
(7, "female", 27, 4, "yes", 3, 18, 5, 4),
(1, "female", 27, 7, "yes", 5, 14, 1, 4),
(12, "male", 27, 1.5, "yes", 3, 17, 5, 4),
(12, "female", 27, 7, "yes", 4, 14, 6, 2),
(3, "female", 42, 15, "yes", 4, 16, 5, 4),
(7, "female", 27, 10, "yes", 4, 12, 7, 3),
(1, "male", 27, 1.5, "no", 2, 18, 5, 2),
(1, "male", 32, 4, "no", 4, 20, 6, 4),
(1, "female", 27, 7, "yes", 3, 14, 1, 3),
(3, "female", 32, 10, "yes", 4, 14, 1, 4),
(3, "male", 27, 4, "yes", 2, 18, 7, 2),
(1, "female", 17.5, 0.75, "no", 5, 14, 4, 5),
(1, "female", 32, 10, "yes", 4, 18, 1, 5),
(7, "female", 32, 7, "yes", 2, 17, 6, 4),
(7, "male", 37, 15, "yes", 2, 20, 6, 4),
(7, "female", 37, 10, "no", 1, 20, 5, 3),
(12, "female", 32, 10, "yes", 2, 16, 5, 5),
(7, "male", 52, 15, "yes", 2, 20, 6, 4),
(7, "female", 42, 15, "yes", 1, 12, 1, 3),
(1, "male", 52, 15, "yes", 2, 20, 6, 3),
(2, "male", 37, 15, "yes", 3, 18, 6, 5),
(12, "female", 22, 4, "no", 3, 12, 3, 4),
(12, "male", 27, 7, "yes", 1, 18, 6, 2),
(1, "male", 27, 4, "yes", 3, 18, 5, 5),
(12, "male", 47, 15, "yes", 4, 17, 6, 5),
(12, "female", 42, 15, "yes", 4, 12, 1, 1),
(7, "male", 27, 4, "no", 3, 14, 3, 4),
(7, "female", 32, 7, "yes", 4, 18, 4, 5),
(1, "male", 32, 0.417, "yes", 3, 12, 3, 4),
(3, "male", 47, 15, "yes", 5, 16, 5, 4),
(12, "male", 37, 15, "yes", 2, 20, 5, 4),
(7, "male", 22, 4, "yes", 2, 17, 6, 4),
(1, "male", 27, 4, "no", 2, 14, 4, 5),
(7, "female", 52, 15, "yes", 5, 16, 1, 3),
(1, "male", 27, 4, "no", 3, 14, 3, 3),
(1, "female", 27, 10, "yes", 4, 16, 1, 4),
(1, "male", 32, 7, "yes", 3, 14, 7, 4),
(7, "male", 32, 7, "yes", 2, 18, 4, 1),
(3, "male", 22, 1.5, "no", 1, 14, 3, 2),
(7, "male", 22, 4, "yes", 3, 18, 6, 4),
(7, "male", 42, 15, "yes", 4, 20, 6, 4),
(2, "female", 57, 15, "yes", 1, 18, 5, 4),
(7, "female", 32, 4, "yes", 3, 18, 5, 2),
(1, "male", 27, 4, "yes", 1, 16, 4, 4),
(7, "male", 32, 7, "yes", 4, 16, 1, 4),
(2, "male", 57, 15, "yes", 1, 17, 4, 4),
(7, "female", 42, 15, "yes", 4, 14, 5, 2),
(7, "male", 37, 10, "yes", 1, 18, 5, 3),
(3, "male", 42, 15, "yes", 3, 17, 6, 1),
(1, "female", 52, 15, "yes", 3, 14, 4, 4),
(2, "female", 27, 7, "yes", 3, 17, 5, 3),
(12, "male", 32, 7, "yes", 2, 12, 4, 2),
(1, "male", 22, 4, "no", 4, 14, 2, 5),
(3, "male", 27, 7, "yes", 3, 18, 6, 4),
(12, "female", 37, 15, "yes", 1, 18, 5, 5),
(7, "female", 32, 15, "yes", 3, 17, 1, 3),
(7, "female", 27, 7, "no", 2, 17, 5, 5),
(1, "female", 32, 7, "yes", 3, 17, 5, 3),
(1, "male", 32, 1.5, "yes", 2, 14, 2, 4),
(12, "female", 42, 15, "yes", 4, 14, 1, 2),
(7, "male", 32, 10, "yes", 3, 14, 5, 4),
(7, "male", 37, 4, "yes", 1, 20, 6, 3),
(1, "female", 27, 4, "yes", 2, 16, 5, 3),
(12, "female", 42, 15, "yes", 3, 14, 4, 3),
(1, "male", 27, 10, "yes", 5, 20, 6, 5),
(12, "male", 37, 10, "yes", 2, 20, 6, 2),
(12, "female", 27, 7, "yes", 1, 14, 3, 3),
(3, "female", 27, 7, "yes", 4, 12, 1, 2),
(3, "male", 32, 10, "yes", 2, 14, 4, 4),
(12, "female", 17.5, 0.75, "yes", 2, 12, 1, 3),
(12, "female", 32, 15, "yes", 3, 18, 5, 4),
(2, "female", 22, 7, "no", 4, 14, 4, 3),
(1, "male", 32, 7, "yes", 4, 20, 6, 5),
(7, "male", 27, 4, "yes", 2, 18, 6, 2),
(1, "female", 22, 1.5, "yes", 5, 14, 5, 3),
(12, "female", 32, 15, "no", 3, 17, 5, 1),
(12, "female", 42, 15, "yes", 2, 12, 1, 2),
(7, "male", 42, 15, "yes", 3, 20, 5, 4),
(12, "male", 32, 10, "no", 2, 18, 4, 2),
(12, "female", 32, 15, "yes", 3, 9, 1, 1),
(7, "male", 57, 15, "yes", 5, 20, 4, 5),
(12, "male", 47, 15, "yes", 4, 20, 6, 4),
(2, "female", 42, 15, "yes", 2, 17, 6, 3),
(12, "male", 37, 15, "yes", 3, 17, 6, 3),
(12, "male", 37, 15, "yes", 5, 17, 5, 2),
(7, "male", 27, 10, "yes", 2, 20, 6, 4),
(2, "male", 37, 15, "yes", 2, 16, 5, 4),
(12, "female", 32, 15, "yes", 1, 14, 5, 2),
(7, "male", 32, 10, "yes", 3, 17, 6, 3),
(2, "male", 37, 15, "yes", 4, 18, 5, 1),
(7, "female", 27, 1.5, "no", 2, 17, 5, 5),
(3, "female", 47, 15, "yes", 2, 17, 5, 2),
(12, "male", 37, 15, "yes", 2, 17, 5, 4),
(12, "female", 27, 4, "no", 2, 14, 5, 5),
(2, "female", 27, 10, "yes", 4, 14, 1, 5),
(1, "female", 22, 4, "yes", 3, 16, 1, 3),
(12, "male", 52, 7, "no", 4, 16, 5, 5),
(2, "female", 27, 4, "yes", 1, 16, 3, 5),
(7, "female", 37, 15, "yes", 2, 17, 6, 4),
(2, "female", 27, 4, "no", 1, 17, 3, 1),
(12, "female", 17.5, 0.75, "yes", 2, 12, 3, 5),
(7, "female", 32, 15, "yes", 5, 18, 5, 4),
(7, "female", 22, 4, "no", 1, 16, 3, 5),
(2, "male", 32, 4, "yes", 4, 18, 6, 4),
(1, "female", 22, 1.5, "yes", 3, 18, 5, 2),
(3, "female", 42, 15, "yes", 2, 17, 5, 4),
(1, "male", 32, 7, "yes", 4, 16, 4, 4),
(12, "male", 37, 15, "no", 3, 14, 6, 2),
(1, "male", 42, 15, "yes", 3, 16, 6, 3),
(1, "male", 27, 4, "yes", 1, 18, 5, 4),
(2, "male", 37, 15, "yes", 4, 20, 7, 3),
(7, "male", 37, 15, "yes", 3, 20, 6, 4),
(3, "male", 22, 1.5, "no", 2, 12, 3, 3),
(3, "male", 32, 4, "yes", 3, 20, 6, 2),
(2, "male", 32, 15, "yes", 5, 20, 6, 5),
(12, "female", 52, 15, "yes", 1, 18, 5, 5),
(12, "male", 47, 15, "no", 1, 18, 6, 5),
(3, "female", 32, 15, "yes", 4, 16, 4, 4),
(7, "female", 32, 15, "yes", 3, 14, 3, 2),
(7, "female", 27, 7, "yes", 4, 16, 1, 2),
(12, "male", 42, 15, "yes", 3, 18, 6, 2),
(7, "female", 42, 15, "yes", 2, 14, 3, 2),
(12, "male", 27, 7, "yes", 2, 17, 5, 4),
(3, "male", 32, 10, "yes", 4, 14, 4, 3),
(7, "male", 47, 15, "yes", 3, 16, 4, 2),
(1, "male", 22, 1.5, "yes", 1, 12, 2, 5),
(7, "female", 32, 10, "yes", 2, 18, 5, 4),
(2, "male", 32, 10, "yes", 2, 17, 6, 5),
(2, "male", 22, 7, "yes", 3, 18, 6, 2),
(1, "female", 32, 15, "yes", 3, 14, 1, 5)) val data = dataList.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
随机森林建模
data.createOrReplaceTempView("data")
// 字符类型转换成数值
val labelWhere = "case when affairs=0 then 0 else cast(1 as double) end as label"
val genderWhere = "case when gender='female' then 0 else cast(1 as double) end as gender"
val childrenWhere = "case when children='no' then 0 else cast(1 as double) end as children"
val dataLabelDF = spark.sql(s"select $labelWhere, $genderWhere,age,yearsmarried,$childrenWhere,religiousness,education,occupation,rating from data")
val featuresArray = Array("gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
// 字段转换成特征向量
val assembler = new VectorAssembler().setInputCols(featuresArray).setOutputCol("features")
val vecDF: DataFrame = assembler.transform(dataLabelDF)
vecDF.show(10, truncate = false)
// 将数据分为训练和测试集(30%进行测试)
val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.7, 0.3))
// 索引标签,将元数据添加到标签列中
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(vecDF)
//labelIndexer.transform(vecDF).show(10, truncate = false)
// 自动识别分类的特征,并对它们进行索引
// 具有大于5个不同的值的特征被视为连续。
val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(5).fit(vecDF)
//featureIndexer.transform(vecDF).show(10, truncate = false)
// 训练随机森林模型
val rf = new RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setNumTrees(10)
// 将索引标签转换回原始标签
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
// Chain indexers and forest in a Pipeline.
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, rf, labelConverter))
// Train model. This also runs the indexers.
val model = pipeline.fit(trainingDF)
// 输出随机森林模型的全部参数值
model.stages(2).extractParamMap()
// 作出预测
val predictions = model.transform(testDF)
// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(10, false)
// 选择(预测标签,实际标签),并计算测试误差
val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println("Test Error = " + (1.0 - accuracy))
// 这里的stages(2)中的“2”对应pipeline中的“rf”,将model强制转换为RandomForestClassificationModel类型
val rfModel = model.stages(2).asInstanceOf[RandomForestClassificationModel]
println("Learned classification forest model:\n" + rfModel.toDebugString)
代码执行结果
vecDF.show(10, truncate = false)
+-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
|label|gender|age |yearsmarried|children|religiousness|education|occupation|rating|features |
+-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
|0.0 |1.0 |37.0|10.0 |0.0 |3.0 |18.0 |7.0 |4.0 |[1.0,37.0,10.0,0.0,3.0,18.0,7.0,4.0]|
|0.0 |0.0 |27.0|4.0 |0.0 |4.0 |14.0 |6.0 |4.0 |[0.0,27.0,4.0,0.0,4.0,14.0,6.0,4.0] |
|0.0 |0.0 |32.0|15.0 |1.0 |1.0 |12.0 |1.0 |4.0 |[0.0,32.0,15.0,1.0,1.0,12.0,1.0,4.0]|
|0.0 |1.0 |57.0|15.0 |1.0 |5.0 |18.0 |6.0 |5.0 |[1.0,57.0,15.0,1.0,5.0,18.0,6.0,5.0]|
|0.0 |1.0 |22.0|0.75 |0.0 |2.0 |17.0 |6.0 |3.0 |[1.0,22.0,0.75,0.0,2.0,17.0,6.0,3.0]|
|0.0 |0.0 |32.0|1.5 |0.0 |2.0 |17.0 |5.0 |5.0 |[0.0,32.0,1.5,0.0,2.0,17.0,5.0,5.0] |
|0.0 |0.0 |22.0|0.75 |0.0 |2.0 |12.0 |1.0 |3.0 |[0.0,22.0,0.75,0.0,2.0,12.0,1.0,3.0]|
|0.0 |1.0 |57.0|15.0 |1.0 |2.0 |14.0 |4.0 |4.0 |[1.0,57.0,15.0,1.0,2.0,14.0,4.0,4.0]|
|0.0 |0.0 |32.0|15.0 |1.0 |4.0 |16.0 |1.0 |2.0 |[0.0,32.0,15.0,1.0,4.0,16.0,1.0,2.0]|
|0.0 |1.0 |22.0|1.5 |0.0 |4.0 |14.0 |4.0 |5.0 |[1.0,22.0,1.5,0.0,4.0,14.0,4.0,5.0] |
+-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
only showing top 10 rows // 将数据分为训练和测试集(30%进行测试)
val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.7, 0.3))
trainingDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, gender: double ... 8 more fields]
testDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, gender: double ... 8 more fields] // 索引标签,将元数据添加到标签列中
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(vecDF)
labelIndexer: org.apache.spark.ml.feature.StringIndexerModel = strIdx_37df210602df
//labelIndexer.transform(vecDF).show(10, truncate = false) // 自动识别分类的特征,并对它们进行索引
// 具有大于5个不同的值的特征被视为连续。
val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(5).fit(vecDF)
featureIndexer: org.apache.spark.ml.feature.VectorIndexerModel = vecIdx_9595c228f520
//featureIndexer.transform(vecDF).show(10, truncate = false) // 训练随机森林模型
val rf = new RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setNumTrees(10)
rf: org.apache.spark.ml.classification.RandomForestClassifier = rfc_d0e7623d0b10 // 将索引标签转换回原始标签
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
labelConverter: org.apache.spark.ml.feature.IndexToString = idxToStr_32d6938f2c94 // Chain indexers and forest in a Pipeline.
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, rf, labelConverter))
pipeline: org.apache.spark.ml.Pipeline = pipeline_97716da42fed // Train model. This also runs the indexers.
val model = pipeline.fit(trainingDF)
model: org.apache.spark.ml.PipelineModel = pipeline_97716da42fed // 输出随机森林模型的全部参数值
model.stages(2).extractParamMap()
res10: org.apache.spark.ml.param.ParamMap =
{
rfc_0d830180d598-cacheNodeIds: false,
rfc_0d830180d598-checkpointInterval: 10,
rfc_0d830180d598-featureSubsetStrategy: auto,
rfc_0d830180d598-featuresCol: indexedFeatures,
rfc_0d830180d598-impurity: gini,
rfc_0d830180d598-labelCol: indexedLabel,
rfc_0d830180d598-maxBins: 32,
rfc_0d830180d598-maxDepth: 5,
rfc_0d830180d598-maxMemoryInMB: 256,
rfc_0d830180d598-minInfoGain: 0.0,
rfc_0d830180d598-minInstancesPerNode: 1,
rfc_0d830180d598-predictionCol: prediction,
rfc_0d830180d598-probabilityCol: probability,
rfc_0d830180d598-rawPredictionCol: rawPrediction,
rfc_0d830180d598-seed: 207336481,
rfc_0d830180d598-subsamplingRate: 1.0
} // 作出预测
val predictions = model.transform(testDF)
predictions: org.apache.spark.sql.DataFrame = [label: double, gender: double ... 14 more fields] predictions.select("predictedLabel", "label", "features").show(10,false)
+--------------+-----+-------------------------------------+
|predictedLabel|label|features |
+--------------+-----+-------------------------------------+
|0.0 |0.0 |[0.0,22.0,0.125,0.0,4.0,12.0,4.0,5.0]|
|0.0 |0.0 |[0.0,22.0,0.125,0.0,4.0,14.0,4.0,5.0]|
|0.0 |0.0 |[0.0,22.0,0.417,0.0,1.0,17.0,6.0,4.0]|
|0.0 |0.0 |[0.0,22.0,0.417,0.0,4.0,14.0,5.0,5.0]|
|0.0 |0.0 |[0.0,22.0,0.417,1.0,3.0,14.0,3.0,5.0]|
|0.0 |0.0 |[0.0,22.0,0.75,0.0,5.0,18.0,1.0,5.0] |
|0.0 |0.0 |[0.0,22.0,1.5,0.0,1.0,14.0,1.0,5.0] |
|0.0 |0.0 |[0.0,22.0,1.5,0.0,4.0,16.0,5.0,3.0] |
|0.0 |0.0 |[0.0,22.0,1.5,0.0,4.0,17.0,5.0,5.0] |
|0.0 |0.0 |[0.0,22.0,1.5,1.0,3.0,12.0,1.0,3.0] |
+--------------+-----+-------------------------------------+
only showing top 10 rows // 选择(预测标签,实际标签),并计算测试误差
val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy")
evaluator: org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator = mcEval_13a195abc422 val accuracy = evaluator.evaluate(predictions)
accuracy: Double = 0.7365591397849462 println("Test Error = " + (1.0 - accuracy))
Test Error = 0.26344086021505375 // 这里的stages(2)中的“2”对应pipeline中的“rf”,将model强制转换为RandomForestClassificationModel类型
val rfModel = model.stages(2).asInstanceOf[RandomForestClassificationModel]
rfModel: org.apache.spark.ml.classification.RandomForestClassificationModel = RandomForestClassificationModel (uid=rfc_f7bb5e488533) with 10 trees println("Learned classification forest model:\n" + rfModel.toDebugString)
Learned classification forest model:
RandomForestClassificationModel (uid=rfc_f7bb5e488533) with 10 trees
Tree 0 (weight 1.0):
If (feature 2 <= 1.5)
If (feature 5 <= 12.0)
If (feature 6 <= 1.0)
Predict: 0.0
Else (feature 6 > 1.0)
If (feature 2 <= 0.125)
Predict: 0.0
Else (feature 2 > 0.125)
Predict: 1.0
Else (feature 5 > 12.0)
If (feature 0 in {0.0})
If (feature 5 <= 16.0)
Predict: 0.0
Else (feature 5 > 16.0)
If (feature 1 <= 22.0)
Predict: 0.0
Else (feature 1 > 22.0)
Predict: 0.0
Else (feature 0 not in {0.0})
If (feature 2 <= 0.75)
If (feature 4 in {0.0,1.0,2.0,4.0})
Predict: 0.0
Else (feature 4 not in {0.0,1.0,2.0,4.0})
Predict: 0.0
Else (feature 2 > 0.75)
If (feature 1 <= 22.0)
Predict: 0.0
Else (feature 1 > 22.0)
Predict: 1.0
Else (feature 2 > 1.5)
If (feature 1 <= 42.0)
If (feature 1 <= 27.0)
If (feature 5 <= 16.0)
If (feature 6 <= 5.0)
Predict: 0.0
Else (feature 6 > 5.0)
Predict: 1.0
Else (feature 5 > 16.0)
If (feature 4 in {3.0})
Predict: 0.0
Else (feature 4 not in {3.0})
Predict: 0.0
Else (feature 1 > 27.0)
If (feature 4 in {0.0,3.0,4.0})
If (feature 2 <= 4.0)
Predict: 1.0
Else (feature 2 > 4.0)
Predict: 0.0
Else (feature 4 not in {0.0,3.0,4.0})
If (feature 6 <= 4.0)
Predict: 0.0
Else (feature 6 > 4.0)
Predict: 1.0
Else (feature 1 > 42.0)
If (feature 4 in {2.0,4.0})
Predict: 0.0
Else (feature 4 not in {2.0,4.0})
If (feature 4 in {0.0})
Predict: 1.0
Else (feature 4 not in {0.0})
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
Predict: 0.0
Tree 1 (weight 1.0):
If (feature 7 in {0.0,2.0,4.0})
If (feature 7 in {0.0})
If (feature 1 <= 42.0)
If (feature 4 in {1.0})
Predict: 0.0
Else (feature 4 not in {1.0})
Predict: 1.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 7 not in {0.0})
If (feature 1 <= 17.5)
If (feature 4 in {3.0})
Predict: 0.0
Else (feature 4 not in {3.0})
Predict: 1.0
Else (feature 1 > 17.5)
If (feature 0 in {0.0})
If (feature 4 in {1.0,3.0,4.0})
Predict: 0.0
Else (feature 4 not in {1.0,3.0,4.0})
Predict: 0.0
Else (feature 0 not in {0.0})
If (feature 6 <= 2.0)
Predict: 1.0
Else (feature 6 > 2.0)
Predict: 0.0
Else (feature 7 not in {0.0,2.0,4.0})
If (feature 3 in {0.0})
If (feature 5 <= 14.0)
If (feature 4 in {1.0,3.0})
Predict: 0.0
Else (feature 4 not in {1.0,3.0})
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
Predict: 1.0
Else (feature 5 > 14.0)
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
If (feature 4 in {0.0,2.0,3.0,4.0})
Predict: 0.0
Else (feature 4 not in {0.0,2.0,3.0,4.0})
Predict: 1.0
Else (feature 3 not in {0.0})
If (feature 5 <= 12.0)
If (feature 0 in {1.0})
Predict: 0.0
Else (feature 0 not in {1.0})
If (feature 6 <= 1.0)
Predict: 0.0
Else (feature 6 > 1.0)
Predict: 0.0
Else (feature 5 > 12.0)
If (feature 4 in {0.0,2.0,3.0,4.0})
If (feature 1 <= 47.0)
Predict: 0.0
Else (feature 1 > 47.0)
Predict: 1.0
Else (feature 4 not in {0.0,2.0,3.0,4.0})
If (feature 1 <= 22.0)
Predict: 1.0
Else (feature 1 > 22.0)
Predict: 0.0
Tree 2 (weight 1.0):
If (feature 7 in {0.0})
If (feature 4 in {1.0})
Predict: 0.0
Else (feature 4 not in {1.0})
If (feature 6 <= 5.0)
If (feature 1 <= 42.0)
Predict: 1.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 6 > 5.0)
Predict: 0.0
Else (feature 7 not in {0.0})
If (feature 5 <= 16.0)
If (feature 7 in {1.0})
If (feature 6 <= 4.0)
If (feature 2 <= 7.0)
Predict: 0.0
Else (feature 2 > 7.0)
Predict: 1.0
Else (feature 6 > 4.0)
Predict: 1.0
Else (feature 7 not in {1.0})
If (feature 3 in {1.0})
If (feature 1 <= 17.5)
Predict: 1.0
Else (feature 1 > 17.5)
Predict: 0.0
Else (feature 3 not in {1.0})
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
Predict: 0.0
Else (feature 5 > 16.0)
If (feature 3 in {0.0})
If (feature 4 in {4.0})
Predict: 0.0
Else (feature 4 not in {4.0})
If (feature 5 <= 18.0)
Predict: 0.0
Else (feature 5 > 18.0)
Predict: 0.0
Else (feature 3 not in {0.0})
If (feature 4 in {0.0,3.0,4.0})
If (feature 7 in {2.0})
Predict: 0.0
Else (feature 7 not in {2.0})
Predict: 0.0
Else (feature 4 not in {0.0,3.0,4.0})
If (feature 6 <= 4.0)
Predict: 0.0
Else (feature 6 > 4.0)
Predict: 1.0
Tree 3 (weight 1.0):
If (feature 3 in {0.0})
If (feature 7 in {3.0})
Predict: 0.0
Else (feature 7 not in {3.0})
If (feature 2 <= 10.0)
If (feature 4 in {2.0,3.0,4.0})
If (feature 4 in {4.0})
Predict: 0.0
Else (feature 4 not in {4.0})
Predict: 0.0
Else (feature 4 not in {2.0,3.0,4.0})
If (feature 7 in {0.0,2.0,4.0})
Predict: 0.0
Else (feature 7 not in {0.0,2.0,4.0})
Predict: 1.0
Else (feature 2 > 10.0)
Predict: 1.0
Else (feature 3 not in {0.0})
If (feature 6 <= 2.0)
If (feature 5 <= 16.0)
If (feature 7 in {0.0,1.0,2.0,4.0})
If (feature 4 in {0.0,1.0,3.0,4.0})
Predict: 0.0
Else (feature 4 not in {0.0,1.0,3.0,4.0})
Predict: 1.0
Else (feature 7 not in {0.0,1.0,2.0,4.0})
If (feature 1 <= 22.0)
Predict: 0.0
Else (feature 1 > 22.0)
Predict: 0.0
Else (feature 5 > 16.0)
If (feature 7 in {0.0,1.0,3.0})
Predict: 0.0
Else (feature 7 not in {0.0,1.0,3.0})
Predict: 1.0
Else (feature 6 > 2.0)
If (feature 4 in {0.0,3.0,4.0})
If (feature 7 in {0.0,2.0,3.0,4.0})
If (feature 4 in {3.0,4.0})
Predict: 0.0
Else (feature 4 not in {3.0,4.0})
Predict: 0.0
Else (feature 7 not in {0.0,2.0,3.0,4.0})
If (feature 6 <= 4.0)
Predict: 0.0
Else (feature 6 > 4.0)
Predict: 1.0
Else (feature 4 not in {0.0,3.0,4.0})
If (feature 1 <= 22.0)
If (feature 5 <= 14.0)
Predict: 1.0
Else (feature 5 > 14.0)
Predict: 1.0
Else (feature 1 > 22.0)
If (feature 6 <= 6.0)
Predict: 0.0
Else (feature 6 > 6.0)
Predict: 1.0
Tree 4 (weight 1.0):
If (feature 7 in {0.0,2.0,4.0})
If (feature 7 in {0.0})
If (feature 6 <= 5.0)
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
If (feature 4 in {2.0,4.0})
Predict: 1.0
Else (feature 4 not in {2.0,4.0})
Predict: 1.0
Else (feature 6 > 5.0)
Predict: 0.0
Else (feature 7 not in {0.0})
If (feature 2 <= 1.5)
If (feature 5 <= 12.0)
If (feature 2 <= 0.125)
Predict: 0.0
Else (feature 2 > 0.125)
Predict: 0.0
Else (feature 5 > 12.0)
If (feature 1 <= 17.5)
Predict: 1.0
Else (feature 1 > 17.5)
Predict: 0.0
Else (feature 2 > 1.5)
If (feature 2 <= 7.0)
If (feature 4 in {1.0,3.0,4.0})
Predict: 0.0
Else (feature 4 not in {1.0,3.0,4.0})
Predict: 0.0
Else (feature 2 > 7.0)
If (feature 5 <= 16.0)
Predict: 0.0
Else (feature 5 > 16.0)
Predict: 0.0
Else (feature 7 not in {0.0,2.0,4.0})
If (feature 5 <= 12.0)
Predict: 0.0
Else (feature 5 > 12.0)
If (feature 4 in {0.0,3.0,4.0})
If (feature 1 <= 47.0)
If (feature 1 <= 22.0)
Predict: 0.0
Else (feature 1 > 22.0)
Predict: 0.0
Else (feature 1 > 47.0)
Predict: 1.0
Else (feature 4 not in {0.0,3.0,4.0})
If (feature 1 <= 27.0)
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
Predict: 0.0
Else (feature 1 > 27.0)
If (feature 5 <= 14.0)
Predict: 1.0
Else (feature 5 > 14.0)
Predict: 1.0
Tree 5 (weight 1.0):
If (feature 7 in {0.0})
If (feature 1 <= 42.0)
If (feature 6 <= 4.0)
Predict: 1.0
Else (feature 6 > 4.0)
If (feature 4 in {1.0})
Predict: 0.0
Else (feature 4 not in {1.0})
Predict: 1.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 7 not in {0.0})
If (feature 2 <= 1.5)
If (feature 4 in {0.0,2.0,3.0})
If (feature 1 <= 22.0)
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
Predict: 0.0
Else (feature 1 > 22.0)
Predict: 0.0
Else (feature 4 not in {0.0,2.0,3.0})
If (feature 1 <= 17.5)
If (feature 6 <= 4.0)
Predict: 1.0
Else (feature 6 > 4.0)
Predict: 0.0
Else (feature 1 > 17.5)
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
Predict: 0.0
Else (feature 2 > 1.5)
If (feature 6 <= 5.0)
If (feature 5 <= 17.0)
If (feature 7 in {2.0,4.0})
Predict: 0.0
Else (feature 7 not in {2.0,4.0})
Predict: 0.0
Else (feature 5 > 17.0)
If (feature 6 <= 1.0)
Predict: 0.0
Else (feature 6 > 1.0)
Predict: 0.0
Else (feature 6 > 5.0)
If (feature 4 in {0.0,3.0,4.0})
If (feature 7 in {3.0,4.0})
Predict: 0.0
Else (feature 7 not in {3.0,4.0})
Predict: 0.0
Else (feature 4 not in {0.0,3.0,4.0})
If (feature 6 <= 6.0)
Predict: 0.0
Else (feature 6 > 6.0)
Predict: 0.0
Tree 6 (weight 1.0):
If (feature 4 in {0.0,3.0,4.0})
If (feature 5 <= 12.0)
If (feature 7 in {1.0,2.0,3.0,4.0})
Predict: 0.0
Else (feature 7 not in {1.0,2.0,3.0,4.0})
If (feature 6 <= 3.0)
Predict: 0.0
Else (feature 6 > 3.0)
Predict: 1.0
Else (feature 5 > 12.0)
If (feature 7 in {0.0,1.0,2.0})
If (feature 6 <= 1.0)
If (feature 7 in {0.0,2.0})
Predict: 0.0
Else (feature 7 not in {0.0,2.0})
Predict: 0.0
Else (feature 6 > 1.0)
If (feature 1 <= 37.0)
Predict: 1.0
Else (feature 1 > 37.0)
Predict: 0.0
Else (feature 7 not in {0.0,1.0,2.0})
If (feature 1 <= 17.5)
If (feature 4 in {3.0})
Predict: 0.0
Else (feature 4 not in {3.0})
Predict: 1.0
Else (feature 1 > 17.5)
If (feature 6 <= 4.0)
Predict: 0.0
Else (feature 6 > 4.0)
Predict: 0.0
Else (feature 4 not in {0.0,3.0,4.0})
If (feature 7 in {0.0,4.0})
If (feature 5 <= 12.0)
If (feature 2 <= 0.125)
Predict: 0.0
Else (feature 2 > 0.125)
If (feature 1 <= 17.5)
Predict: 1.0
Else (feature 1 > 17.5)
Predict: 0.0
Else (feature 5 > 12.0)
If (feature 7 in {0.0})
If (feature 1 <= 42.0)
Predict: 1.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 7 not in {0.0})
If (feature 2 <= 1.5)
Predict: 0.0
Else (feature 2 > 1.5)
Predict: 0.0
Else (feature 7 not in {0.0,4.0})
If (feature 6 <= 4.0)
If (feature 7 in {3.0})
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
Predict: 0.0
Else (feature 7 not in {3.0})
If (feature 5 <= 16.0)
Predict: 0.0
Else (feature 5 > 16.0)
Predict: 1.0
Else (feature 6 > 4.0)
If (feature 6 <= 6.0)
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
Predict: 1.0
Else (feature 6 > 6.0)
If (feature 5 <= 18.0)
Predict: 1.0
Else (feature 5 > 18.0)
Predict: 0.0
Tree 7 (weight 1.0):
If (feature 7 in {0.0,2.0,4.0})
If (feature 2 <= 1.5)
If (feature 4 in {1.0,2.0,3.0})
If (feature 1 <= 17.5)
Predict: 1.0
Else (feature 1 > 17.5)
Predict: 0.0
Else (feature 4 not in {1.0,2.0,3.0})
If (feature 5 <= 14.0)
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
Predict: 1.0
Else (feature 5 > 14.0)
Predict: 0.0
Else (feature 2 > 1.5)
If (feature 7 in {0.0,2.0})
If (feature 4 in {1.0,3.0,4.0})
If (feature 5 <= 16.0)
Predict: 0.0
Else (feature 5 > 16.0)
Predict: 0.0
Else (feature 4 not in {1.0,3.0,4.0})
If (feature 6 <= 5.0)
Predict: 1.0
Else (feature 6 > 5.0)
Predict: 0.0
Else (feature 7 not in {0.0,2.0})
If (feature 4 in {0.0,1.0,3.0})
If (feature 1 <= 42.0)
Predict: 0.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 4 not in {0.0,1.0,3.0})
If (feature 5 <= 16.0)
Predict: 0.0
Else (feature 5 > 16.0)
Predict: 0.0
Else (feature 7 not in {0.0,2.0,4.0})
If (feature 2 <= 0.75)
Predict: 0.0
Else (feature 2 > 0.75)
If (feature 4 in {4.0})
If (feature 6 <= 5.0)
If (feature 1 <= 37.0)
Predict: 1.0
Else (feature 1 > 37.0)
Predict: 0.0
Else (feature 6 > 5.0)
Predict: 0.0
Else (feature 4 not in {4.0})
If (feature 5 <= 12.0)
If (feature 1 <= 27.0)
Predict: 0.0
Else (feature 1 > 27.0)
Predict: 0.0
Else (feature 5 > 12.0)
If (feature 7 in {1.0})
Predict: 1.0
Else (feature 7 not in {1.0})
Predict: 0.0
Tree 8 (weight 1.0):
If (feature 5 <= 16.0)
If (feature 4 in {0.0,1.0})
If (feature 0 in {0.0})
If (feature 2 <= 0.75)
If (feature 1 <= 17.5)
Predict: 1.0
Else (feature 1 > 17.5)
Predict: 0.0
Else (feature 2 > 0.75)
If (feature 6 <= 4.0)
Predict: 0.0
Else (feature 6 > 4.0)
Predict: 0.0
Else (feature 0 not in {0.0})
If (feature 5 <= 12.0)
Predict: 1.0
Else (feature 5 > 12.0)
If (feature 7 in {2.0,4.0})
Predict: 0.0
Else (feature 7 not in {2.0,4.0})
Predict: 0.0
Else (feature 4 not in {0.0,1.0})
If (feature 7 in {0.0,2.0,3.0,4.0})
If (feature 1 <= 22.0)
If (feature 6 <= 3.0)
Predict: 0.0
Else (feature 6 > 3.0)
Predict: 0.0
Else (feature 1 > 22.0)
If (feature 6 <= 6.0)
Predict: 0.0
Else (feature 6 > 6.0)
Predict: 1.0
Else (feature 7 not in {0.0,2.0,3.0,4.0})
If (feature 1 <= 42.0)
If (feature 6 <= 4.0)
Predict: 0.0
Else (feature 6 > 4.0)
Predict: 1.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 5 > 16.0)
If (feature 5 <= 18.0)
If (feature 4 in {3.0})
If (feature 7 in {1.0,2.0,3.0})
Predict: 0.0
Else (feature 7 not in {1.0,2.0,3.0})
If (feature 6 <= 5.0)
Predict: 0.0
Else (feature 6 > 5.0)
Predict: 0.0
Else (feature 4 not in {3.0})
If (feature 2 <= 0.75)
Predict: 0.0
Else (feature 2 > 0.75)
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
Predict: 1.0
Else (feature 5 > 18.0)
If (feature 1 <= 27.0)
If (feature 7 in {3.0})
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
Predict: 1.0
Else (feature 7 not in {3.0})
If (feature 2 <= 4.0)
Predict: 0.0
Else (feature 2 > 4.0)
Predict: 1.0
Else (feature 1 > 27.0)
If (feature 6 <= 5.0)
If (feature 6 <= 4.0)
Predict: 0.0
Else (feature 6 > 4.0)
Predict: 0.0
Else (feature 6 > 5.0)
If (feature 4 in {3.0,4.0})
Predict: 0.0
Else (feature 4 not in {3.0,4.0})
Predict: 0.0
Tree 9 (weight 1.0):
If (feature 5 <= 16.0)
If (feature 6 <= 2.0)
If (feature 1 <= 42.0)
If (feature 6 <= 1.0)
If (feature 5 <= 9.0)
Predict: 1.0
Else (feature 5 > 9.0)
Predict: 0.0
Else (feature 6 > 1.0)
If (feature 1 <= 27.0)
Predict: 0.0
Else (feature 1 > 27.0)
Predict: 1.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 6 > 2.0)
If (feature 1 <= 27.0)
If (feature 5 <= 14.0)
If (feature 6 <= 3.0)
Predict: 0.0
Else (feature 6 > 3.0)
Predict: 0.0
Else (feature 5 > 14.0)
Predict: 0.0
Else (feature 1 > 27.0)
If (feature 4 in {1.0,2.0,4.0})
If (feature 5 <= 9.0)
Predict: 0.0
Else (feature 5 > 9.0)
Predict: 0.0
Else (feature 4 not in {1.0,2.0,4.0})
If (feature 7 in {2.0,3.0,4.0})
Predict: 0.0
Else (feature 7 not in {2.0,3.0,4.0})
Predict: 1.0
Else (feature 5 > 16.0)
If (feature 6 <= 4.0)
If (feature 4 in {3.0})
Predict: 0.0
Else (feature 4 not in {3.0})
If (feature 1 <= 42.0)
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
Predict: 0.0
Else (feature 1 > 42.0)
Predict: 1.0
Else (feature 6 > 4.0)
If (feature 4 in {3.0,4.0})
If (feature 1 <= 37.0)
If (feature 3 in {0.0})
Predict: 0.0
Else (feature 3 not in {0.0})
Predict: 0.0
Else (feature 1 > 37.0)
If (feature 1 <= 42.0)
Predict: 0.0
Else (feature 1 > 42.0)
Predict: 0.0
Else (feature 4 not in {3.0,4.0})
If (feature 4 in {0.0,2.0})
If (feature 7 in {0.0,1.0,2.0})
Predict: 1.0
Else (feature 7 not in {0.0,1.0,2.0})
Predict: 1.0
Else (feature 4 not in {0.0,2.0})
If (feature 0 in {0.0})
Predict: 0.0
Else (feature 0 not in {0.0})
Predict: 0.0
随机森林模型调优
// 字段转换成特征向量
val assembler = new VectorAssembler().setInputCols(featuresArray).setOutputCol("features")
val vecDF: DataFrame = assembler.transform(dataLabelDF)
vecDF.show(10, truncate = false) // 将数据分为训练和测试集(30%进行测试)
val Array(trainingDF, testDF) = vecDF.randomSplit(Array(0.7, 0.3)) // 索引标签,将元数据添加到标签列中
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(vecDF)
//labelIndexer.transform(vecDF).show(10, truncate = false) // 自动识别分类的特征,并对它们进行索引
// 具有大于5个不同的值的特征被视为连续。
val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(5).fit(vecDF)
//featureIndexer.transform(vecDF).show(10, truncate = false) // 训练随机森林模型
val rf = new RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures") // 将索引标签转换回原始标签
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels) // Chain indexers and forest in a Pipeline.
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, rf, labelConverter)) // 设置参数网格
//impurity 不纯度
//maxBins 离散化"连续特征"的最大划分数
//maxDepth 树的最大深度
//minInfoGain 一个节点分裂的最小信息增益,值为[0,1]
//minInstancesPerNode 每个节点包含的最小样本数 >=1
//numTrees 树的数量
//featureSubsetStrategy // 在每个树节点处分割的特征数,参数值比较多,详细的请参考官方文档
//SubsamplingRate(1.0) 给每棵树分配“学习数据”的比例,范围(0, 1]
//maxMemoryInMB 如果太小,则每次迭代将拆分1个节点,其聚合可能超过此大小。
//checkpointInterval 设置检查点间隔(> = 1)或禁用检查点(-1)。 例如 10意味着,每10次迭代,缓存将获得检查点。
//cacheNodeIds 如果为false,则算法将树传递给执行器以将实例与节点匹配。 如果为true,算法将缓存每个实例的节点ID。 缓存可以加速更大深度的树的训练。 用户可以通过设置checkpointInterval来设置检查或禁用缓存的频率。(default = false)
//seed 种子
val paramGrid = new ParamGridBuilder()
.addGrid(rf.impurity, Array("entropy", "gini"))
.addGrid(rf.maxBins, Array(32, 64))
.addGrid(rf.maxDepth, Array(5, 7, 10))
.addGrid(rf.minInfoGain, Array(0, 0.5, 1))
.addGrid(rf.minInstancesPerNode, Array(10, 20))
.addGrid(rf.numTrees, Array(20, 50))
.addGrid(rf.featureSubsetStrategy, Array("auto", "sqrt"))
.addGrid(rf.subsamplingRate, Array(0.8, 1))
.addGrid(rf.maxMemoryInMB, Array(256, 512))
.addGrid(rf.checkpointInterval, Array(10, 20))
.addGrid(rf.cacheNodeIds, Array(false, true))
.addGrid(rf.seed, Array(123456L, 111L))
.build() // 选择(预测标签,实际标签),并计算测试误差。indexedLabel与prediction都是索引化的,因此可以直接比较
val classEvaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy") // 设置交叉验证
val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(classEvaluator).setEstimatorParamMaps(paramGrid).setNumFolds(5) // 执行交叉验证,并选择出最好的参数集合
val cvModel = cv.fit(trainingDF) // 查看全部参数
cvModel.extractParamMap()
// cvModel.avgMetrics.length=cvModel.getEstimatorParamMaps.length
// cvModel.avgMetrics与cvModel.getEstimatorParamMaps中的元素一一对应
cvModel.avgMetrics.length
cvModel.avgMetrics // 参数对应的平均度量 cvModel.getEstimatorParamMaps.length
cvModel.getEstimatorParamMaps // 参数组合的集合 cvModel.getEvaluator.extractParamMap() // 评估的参数 cvModel.getEvaluator.isLargerBetter // 评估的度量值是大的好,还是小的好 ,根据评估度量,系统会自动识别
cvModel.getNumFolds // 交叉验证的折数 //################################
// 测试模型
val predictDF: DataFrame = cvModel.transform(testDF).selectExpr(
//"race","poverty","smoke","alcohol","agemth","ybirth","yschool","pc3mth", "features",
"predictedLabel", "label", "features")
predictDF.show(20, false)
Spark2 Random Forests 随机森林的更多相关文章
- R语言之Random Forest随机森林
什么是随机森林? 随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法.随机森林的名称中有 ...
- 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 机器学习中的算法——决策树模型组合之随机森林与GBDT
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...
- paper 84:机器学习算法--随机森林
http://www.cnblogs.com/wentingtu/archive/2011/12/13/2286212.html中一些内容 基础内容: 这里只是准备简单谈谈基础的内容,主要参考一下别人 ...
- 决策树模型组合之(在线)随机森林与GBDT
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over ...
- 机器学习中的算法-决策树模型组合之随机森林与GBDT
机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...
- 随机森林与GBDT
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...
- 决策树模型组合之随机森林与GBDT
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 决策树模型组合之随机森林与GBDT(转)
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
随机推荐
- quartus II输入原理图及仿真步骤
在Quartus II中输入原理图以及实现仿真是学习基本数字电路的好方法.下面以一个基本的D锁存器为例,在quartus II 13.0中一步一步来实现原理图输入以及仿真过程. 1,创建工程 指定工程 ...
- XMR恶意挖矿脚本处理笔记
一.登录 攻击者如何登录系统未能查出,所有日志已被清除.为防万一,把系统中没用的用户都删掉并修改其他用户密码. 二.被攻击后的表象 1.服务器资源被大量占用,资源占用率飙升: 2.服务器所有JS文件被 ...
- mock以及特殊场景下对mock数据的处理
一.为什么要mock 工作中遇到以下问题,我们可以使用mock解决: 无法控制第三方系统某接口的返回,返回的数据不满足要求 某依赖系统还未开发完成,就需要对被测系统进行测试 有些系统不支持重复请求,或 ...
- Windows下Kettle定时任务执行并发送错误信息邮件
Windows下Kettle定时任务执行并发送错误信息邮件 1.首先安装JDK 2.配置JDK环境 3.下载并解压PDI(kettle) 目前我用的是版本V7的,可以直接百度搜索下载社区版,企业版收费 ...
- 登录sqlplus 后,显示问号 ????
登录sqlplus 后,显示 ???? SYS@orcl>startup ORACLE instance started. Total System Global Area 3290345472 ...
- CoffeeScript简介 <一>
介绍 coffeeScript是一种轻量级的编程语言,可以用编译器生成原生javascript代码.它简化了许多javascript繁琐的方式,可以让你用简单的方式直接使用一行程序代表javascri ...
- Kotlin VS Java:基本语法差异(转载)
5月18号,goole宣布Kotlin成为官方支持的开发语言以来,Kotlin语言社区,公众号,qq群等全面轰炸,本文是一篇译文,来自国外的一个用户,将给大家介绍,基础语法部分Kotlin和java之 ...
- sklearn:Python语言开发的通用机器学习库
引言:深入理解机器学习并全然看懂sklearn文档,须要较深厚的理论基础.可是.要将sklearn应用于实际的项目中,仅仅须要对机器学习理论有一个主要的掌握,就能够直接调用其API来完毕各种机器学习问 ...
- Ubunt 使用Virtualbox虚拟机NAT无法上网解决办法
我的Ubuntu安装了一个Centos虚拟机,为了SSH和上外网的方便,使用了NAT+host Only方式,实现内网+外网,但是安装好的Centos不能连接外网,很是无语,只能Google了-- 解 ...
- 微信小程序场景值
场景值 基础库 1.1.0 开始支持,低版本需做兼容处理 当前支持的场景值有: 场景值ID 说明 1001 发现栏小程序主入口 1005 顶部搜索框的搜索结果页 1006 发现栏小程序主入口搜索框的搜 ...