### 洛谷P4396  题目链接 ###

题目大意:

有 n 个整数组成的数组,m 次询问,每次询问中有四个参数 l ,r,a,b 。问你在[l,r] 的区间内的所有数中,值属于[a,b] 的数的个数以及种类数。

分析:

1、由于可以离线操作,故采用莫队。

2、由于在莫队的基础上还涉及区间[a,b]的值的个数,故可以用前缀和的思想,求得出sum(b) - sum(a - 1)即可。由于与莫队使用是动态的,故需要用树状数组维护,因为可以 logn 动态插入。

3、对于求区间种类数,需要用第二个树状数组维护。且需要用 cnt[] 数组来标记当前数是否是第一次出现或最后一次出现的数。如果是第一次出现且需 add,则更新当前点以及后置点 + +(树状数组插入);若为最后一次出现且需 del,则更新当前点以及后置点 - - 即可。

4、由于数组中数的范围未给定,在树状数组中可能爆空间,故需要离散化。

算法正确性:

树状数组的原理在于,若当前点值为 x ,则对于所有>= x 的数,都要加上这个数的贡献,即 + + 。比如有 >= x 的数 y ,在求前缀和(即在求 <= y 的数的个数)时,所有出现过的且 <= y 的值的点 x ,都在之前的插入对答案做有贡献。可想而知,树状数组的这种优点导致可以存储前缀和。

然后再注意一下离散化的细节即可,最好在去重的末端加入一个极大值,这样lower_bound 就不会越界,且在求 pos1 以及 pos2 时能很好地判断取值。

然后莫队排序时,需要用到奇偶排序,不然会 T 一个点。

代码如下:

#include<iostream>
#include<algorithm>
#include<string.h>
#include<cmath>
using namespace std;
#define inf 0x3f3f3f3f
#define maxn 100008
int n,m,block,len;
int be[maxn];
int g[maxn],f[maxn],d[maxn];
int c[maxn],z[maxn],cnt[maxn];
struct S{
int ans1,ans2;
}s[maxn];
struct Mo{
int id;
int l,r;
int a,b;
}A[maxn];
bool cmp(Mo q,Mo w){
return (be[q.l]^be[w.l])?q.l<w.l:(be[q.l]&)?q.r<w.r:q.r>w.r; //奇偶排序
}
inline int lowbit(int x){return x&(-x);}
void Zupdate(int i,int q){
while(i<=len){
z[i]+=q;
i+=lowbit(i);
}
return;
}
int Zquery(int i){
int ans=;
while(i){
ans+=z[i];
i-=lowbit(i);
}
return ans;
}
void update(int i,int q){
while(i<=len){
c[i]+=q;
i+=lowbit(i);
}
return;
}
inline int query(int i){
int ans=;
while(i){
ans+=c[i];
i-=lowbit(i);
}
return ans;
}
void add(int x){
int pos=d[x];
update(pos,);
if(!cnt[pos]) Zupdate(pos,);
cnt[pos]++;
return;
}
void del(int x){
int pos=d[x];
update(pos,-);
cnt[pos]--;
if(!cnt[pos]) Zupdate(pos,-);
return;
}
int main()
{
scanf("%d%d",&n,&m);
block=sqrt(n);
for(int i=;i<=n;i++) {
scanf("%d",&g[i]);
be[i]=(i-)/block+;//分块
f[i]=g[i];
}
for(int i=;i<=m;i++){
scanf("%d%d%d%d",&A[i].l,&A[i].r,&A[i].a,&A[i].b);
A[i].id=i;
}
sort(A+,A+m+,cmp);
sort(f+,f+n+);
len=unique(f+,f+n+)-f-;
f[len+]=inf;
for(int i=;i<=n;i++) d[i]=lower_bound(f+,f+len+,g[i])-f;// 原数组g[i]中的离散值 d[i]
int l=,r=;
for(int i=;i<=m;i++){
while(l<A[i].l) del(l++);
while(l>A[i].l) add(--l);
while(r<A[i].r) add(++r);
while(r>A[i].r) del(r--);
int pos1=lower_bound(f+,f+len+,A[i].a)-f;
int pos2=lower_bound(f+,f+len+,A[i].b)-f;
if(f[pos2]>A[i].b) pos2--;
s[A[i].id].ans1=query(pos2)-query(pos1-);
s[A[i].id].ans2=Zquery(pos2)-Zquery(pos1-);
}
for(int i=;i<=m;i++) printf("%d %d\n",s[i].ans1,s[i].ans2 );
}

洛谷 P4396 (离散化+莫队+树状数组)的更多相关文章

  1. 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)

    点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...

  2. bzoj3236 作业 莫队+树状数组

    莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...

  3. BZOJ_3289_Mato的文件管理_莫队+树状数组

    BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...

  4. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  5. COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)

    题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...

  6. bzoj 3289: Mato的文件管理 莫队+树状数组

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...

  7. 51nod 1290 Counting Diff Pairs | 莫队 树状数组

    51nod 1290 Counting Diff Pairs | 莫队 树状数组 题面 一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[ ...

  8. HihoCoder 1488 : 排队接水(莫队+树状数组)

    描述 有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟. 由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小. 小 ...

  9. BZOJ 3236 莫队+树状数组

    思路: 莫队+树状数组 (据说此题卡常数) yzy写了一天(偷笑) 复杂度有点儿爆炸 O(msqrt(n)logn) //By SiriusRen #include <cmath> #in ...

随机推荐

  1. Spring Cloud第九篇 | 分布式服务跟踪Sleuth

    ​ ​本文是Spring Cloud专栏的第九篇文章,了解前八篇文章内容有助于更好的理解本文: Spring Cloud第一篇 | Spring Cloud前言及其常用组件介绍概览 Spring Cl ...

  2. 在 Windows 10 上搭建 Cordova 跨平台开发 Android 环境

    目录 安装 Cordova 安装 Java 和 Android 环境 创建 Cordova 应用程序 构建和运行 Cordova Cordova 简介:Cordova 原名 PhoneGap,是一个开 ...

  3. NodeJS4-8静态资源服务器实战_构建cli工具

    Cli(command-line interface),中文是 命令行界面,简单来说就是可以通过命令行快速生成自己的项目模板等功能(比较熟悉的是vue-cli脚手架这些),把上述写的包做成Cli工具. ...

  4. logging in kubernetes

    background docker docker的日志输出可以通过指定driver输出到不同的位置,常用的是journald和json-file. 使用journald日志输出可能受限于jourand ...

  5. Python基础-day01-2

    第一个 Python 程序 目标 第一个 HelloPython 程序 Python 2.x 与 3​​.x 版本简介 执行 Python 程序的三种方式 解释器 -- python / python ...

  6. Poco的介绍和入门教学

    版权声明:该文章为AirtestProject原创文章:允许转载,但转载必须注明“转载”并保留原链接 前言 前面我们已经介绍了基于图像识别的测试框架Airtest,通过图像识别,已经可以编写大部分的测 ...

  7. Hack the Breach 2.1 VM (CTF Challenge)

    主机扫描: ╰─ nmap -p- -A 192.168.110.151Starting Nmap 7.70 ( https://nmap.org ) at 2019-08-29 09:48 CSTN ...

  8. Vim 基本的使用

    三种模式 按 ESC 进入命令模式 命令模式下输入 Shift + : 进入末行模式 命令模式下输入插入命令,如(i,a,o) 进入输入模式 进入 vim 文件名 vim直接编辑一个文件,如果是已经存 ...

  9. 整理h5移动端适配方案

    <使用Flexible实现手淘H5页面的终端适配>:https://github.com/amfe/article/issues/17 <再聊移动端页面的适配>:https:/ ...

  10. 一个随机切换user_agent的第三方python库:my_fake_useragent

    因为my_fake_useragent 是第三方,所以需要自己进行安装. 不用担心,它没有任何依赖或者附加环境,只安装它自己就行. 方法1: pycharm传统安装方式. 方法2: pip insta ...