洛谷 P4396 (离散化+莫队+树状数组)
题目大意:
有 n 个整数组成的数组,m 次询问,每次询问中有四个参数 l ,r,a,b 。问你在[l,r] 的区间内的所有数中,值属于[a,b] 的数的个数以及种类数。
分析:
1、由于可以离线操作,故采用莫队。
2、由于在莫队的基础上还涉及区间[a,b]的值的个数,故可以用前缀和的思想,求得出sum(b) - sum(a - 1)即可。由于与莫队使用是动态的,故需要用树状数组维护,因为可以 logn 动态插入。
3、对于求区间种类数,需要用第二个树状数组维护。且需要用 cnt[] 数组来标记当前数是否是第一次出现或最后一次出现的数。如果是第一次出现且需 add,则更新当前点以及后置点 + +(树状数组插入);若为最后一次出现且需 del,则更新当前点以及后置点 - - 即可。
4、由于数组中数的范围未给定,在树状数组中可能爆空间,故需要离散化。
算法正确性:
树状数组的原理在于,若当前点值为 x ,则对于所有>= x 的数,都要加上这个数的贡献,即 + + 。比如有 >= x 的数 y ,在求前缀和(即在求 <= y 的数的个数)时,所有出现过的且 <= y 的值的点 x ,都在之前的插入对答案做有贡献。可想而知,树状数组的这种优点导致可以存储前缀和。
然后再注意一下离散化的细节即可,最好在去重的末端加入一个极大值,这样lower_bound 就不会越界,且在求 pos1 以及 pos2 时能很好地判断取值。
然后莫队排序时,需要用到奇偶排序,不然会 T 一个点。
代码如下:
#include<iostream>
#include<algorithm>
#include<string.h>
#include<cmath>
using namespace std;
#define inf 0x3f3f3f3f
#define maxn 100008
int n,m,block,len;
int be[maxn];
int g[maxn],f[maxn],d[maxn];
int c[maxn],z[maxn],cnt[maxn];
struct S{
int ans1,ans2;
}s[maxn];
struct Mo{
int id;
int l,r;
int a,b;
}A[maxn];
bool cmp(Mo q,Mo w){
return (be[q.l]^be[w.l])?q.l<w.l:(be[q.l]&)?q.r<w.r:q.r>w.r; //奇偶排序
}
inline int lowbit(int x){return x&(-x);}
void Zupdate(int i,int q){
while(i<=len){
z[i]+=q;
i+=lowbit(i);
}
return;
}
int Zquery(int i){
int ans=;
while(i){
ans+=z[i];
i-=lowbit(i);
}
return ans;
}
void update(int i,int q){
while(i<=len){
c[i]+=q;
i+=lowbit(i);
}
return;
}
inline int query(int i){
int ans=;
while(i){
ans+=c[i];
i-=lowbit(i);
}
return ans;
}
void add(int x){
int pos=d[x];
update(pos,);
if(!cnt[pos]) Zupdate(pos,);
cnt[pos]++;
return;
}
void del(int x){
int pos=d[x];
update(pos,-);
cnt[pos]--;
if(!cnt[pos]) Zupdate(pos,-);
return;
}
int main()
{
scanf("%d%d",&n,&m);
block=sqrt(n);
for(int i=;i<=n;i++) {
scanf("%d",&g[i]);
be[i]=(i-)/block+;//分块
f[i]=g[i];
}
for(int i=;i<=m;i++){
scanf("%d%d%d%d",&A[i].l,&A[i].r,&A[i].a,&A[i].b);
A[i].id=i;
}
sort(A+,A+m+,cmp);
sort(f+,f+n+);
len=unique(f+,f+n+)-f-;
f[len+]=inf;
for(int i=;i<=n;i++) d[i]=lower_bound(f+,f+len+,g[i])-f;// 原数组g[i]中的离散值 d[i]
int l=,r=;
for(int i=;i<=m;i++){
while(l<A[i].l) del(l++);
while(l>A[i].l) add(--l);
while(r<A[i].r) add(++r);
while(r>A[i].r) del(r--);
int pos1=lower_bound(f+,f+len+,A[i].a)-f;
int pos2=lower_bound(f+,f+len+,A[i].b)-f;
if(f[pos2]>A[i].b) pos2--;
s[A[i].id].ans1=query(pos2)-query(pos1-);
s[A[i].id].ans2=Zquery(pos2)-Zquery(pos1-);
}
for(int i=;i<=m;i++) printf("%d %d\n",s[i].ans1,s[i].ans2 );
}
洛谷 P4396 (离散化+莫队+树状数组)的更多相关文章
- 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)
点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...
- bzoj3236 作业 莫队+树状数组
莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...
- BZOJ_3289_Mato的文件管理_莫队+树状数组
BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...
- BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块
题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...
- COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)
题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...
- bzoj 3289: Mato的文件管理 莫队+树状数组
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...
- 51nod 1290 Counting Diff Pairs | 莫队 树状数组
51nod 1290 Counting Diff Pairs | 莫队 树状数组 题面 一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[ ...
- HihoCoder 1488 : 排队接水(莫队+树状数组)
描述 有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟. 由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小. 小 ...
- BZOJ 3236 莫队+树状数组
思路: 莫队+树状数组 (据说此题卡常数) yzy写了一天(偷笑) 复杂度有点儿爆炸 O(msqrt(n)logn) //By SiriusRen #include <cmath> #in ...
随机推荐
- 一篇文章搞明白Integer、new Integer() 和 int 的概念与区别
基本概念的区分 1.Integer 是 int 的包装类,int 则是 java 的一种基本数据类型 2.Integer 变量必须实例化后才能使用,而int变量不需要 3.Integer 实际是对象的 ...
- Java堆的结构是什么样子的?什么是堆中的永久代(Perm Gen space)?
JVM的堆是运行时数据区,所有类的实例和数组都是在堆上分配内存.它在JVM启动的时候被创建.对象所占的堆内存是由自动内存管理系统也就是垃圾收集器回收. 堆内存是由存活和死亡的对象组成的.存活的对象是应 ...
- Vue大纲
Vue框架 Vue ---- vue的基本使用 文本/事件/属性指令 补充: js面向对象 js函数 Vue ---- 表单指令 条件指令 循环指令 分隔符 过滤器 计算属性 监听属性 Vue --- ...
- 蝉知CMS5.6反射型XSS审计复现
0x00 源起 最近在深入学习反射XSS时遇到蝉知CMS5.6反射型XSS这个案列,乍一看网上的漏洞介绍少之又少,也没有详细的审计复现流程.虽然是17年的漏洞了,不巧本人正是一个喜欢钻研的人.这个CM ...
- C# WPF有趣的登录加载窗体
时间如流水,只能流去不流回! 点赞再看,养成习惯,这是您给我创作的动力! 本文 Dotnet9 https://dotnet9.com 已收录,站长乐于分享dotnet相关技术,比如Winform.W ...
- python基础知识第一篇(认识Python)
开发语言: 高级语言:python java php c++ 生成的字节码 字节码转换为机器码 计算机识别运行 低级语言:C 汇编 生成的机器码 PHP语言:适用于网页,局限性 Python,Java ...
- CQRS+ES项目解析-Equinox
今天我们来分析另一个开源的CQRS+ES项目:Equinox.该项目可以在github上下载并直接本地运行,项目地址:https://github.com/EduardoPires/EquinoxPr ...
- Caffe源码-SyncedMemory类
SyncedMemory类简介 最近在阅读caffe源码,代码来自BVLC/caffe,基本是参照网络上比较推荐的 Blob-->Layer-->Net-->Solver 的顺序来分 ...
- 一起学MyBatis之入门篇
概述 本文以一个简单的小例子,简述在Java项目开发中MyBatis的基本用法,属于入门级文章,仅供学习分享使用,如有不足之处,还请指正. 什么是MyBatis? MyBatis 是一款优秀的持久层框 ...
- 动态代理模式_应用(Redis工具类)
本次使用动态代理的初衷是学习Redis,使用Java操作Redis时用到Jedis的JedisPool,而后对Jedis的方法进一步封装完善成为一个工具类.因为直接使用Jedis对象时,为了保证性能, ...