【DFS的分支限界】(例题-算式等式)
不知道DFS的请滚去 这里瞅一眼再说。
—分支限界—
基本概念:
类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。但在一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
虽然这么说但是老师给的题目也没有只求一个最优解
还是根据一道题目进行讲解吧。
比如下面这道题:算式等式

说真的要是按照概念来这道题也不是求啥最优解为什么要用分支限界
那我们来看看用分支限界怎么来解决这道题目。
按照题目来说,我们要把限制的这个界进行改动(选择几个加数),所以最多会出现n-1个加数,最少会出现2的加数,我们的界就应该从2~n-1,每次改变界的时候进行搜索
因为需要这些加数的和在这个数列中,而遍历查找又会花费太多的时间,所以我们不妨在输入的时候把他们也加紧一个set(集合)
所以基本框架::
#include<bits/stdc++.h>
using namespace std;
int n,num[110],q;
set<int> s;
bool flag[10001],fir;
set<int> s;
void dfs(...)...
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>num[i];
s.insert(num[i]);
}
for(q=2;q<n;q++)
{
dfs(...);
}
return 0;
}
接下来就是搜索的策略的考虑。
因为用到了分支限界法,所以我们不妨通过其中一个界来探讨规律:
就按样例来说
Input
6
1 3 5 7 8 9
Output
1+7=8
1+8=9
…
接下来模拟搜索思路,过程可能有些繁琐,没兴趣的可以跳过:
找到num[1]值为1,num[2]未被选择,找到num[2]值为3,sum为4,深度超过界限,查找sum,未找到,返回,num[3]未被选择,找到num[3]值为5,sum值6,深度超限,未找到sum,返回,num[4]未被选择,找到num[4]值为7,sum值8,深度超限,找到sum,输出1+7=8,返回,num[5]未被选择,找到num[5]值为8,sum为9,深度超限,找到sum,输出1+8=9,返回,第一次搜索结束
很明显,只要搜索深度超限,不管是否满足题目条件,分支限界都会让函数直接返回!这就是分支限界法在dfs中最大的体现。
然后再加一个pre(上一次选数的位置)为了优化程序,就可以写出下面的代码,输出控制格式不多说,其他的如果看不懂看看上面的思路就可以了。
#include<bits/stdc++.h>
using namespace std;
int n,num[110],q;
set<int> s;
bool flag[10001],fir;
void dfs(int sum,int pre,int dep)
{
if(dep==q+1)
{
if(s.count(sum))
{
fir=1;
for(int i=1;i<=n;i++)
{
if(flag[i])
{
if(!fir)
cout<<"+"<<num[i];
else
{
cout<<num[i];
fir=0;
}
}
}
cout<<"="<<sum<<endl;
}
return;
}
for(int i=pre;i<=n;i++)
{
if(!flag[i])
{
flag[i]=1;
dfs(sum+num[i],i+1,dep+1);
flag[i]=0;
}
else break;
}
return;
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>num[i];
s.insert(num[i]);
}
for(q=2;q<n;q++)
{
dfs(0,1,1);
}
return 0;
}
dfs在主程序中给出的初值也很好理解:sum=0因为还没有选择任何数,pre=1因为要从pre开始美剧,dep深度自然为1.
ov.
【DFS的分支限界】(例题-算式等式)的更多相关文章
- 【DFS例题】等式
题目如下: 这道题依然是一道dfs(要求输出方案数很明显用dfs呐) 首先一个模板贴上来: void dfs()//参数用来表示状态 { if(到达终点状态) { ...//根据题意添加 return ...
- 深度搜索(dfs)+典型例题(八皇后)
深度优先搜索简称深搜,从起点出发,走过的点要做标记,发现有没走过的点,就随意挑一个往前走,走不了就回退,此种路径搜索策略就称为“深度优先搜索”,简称“深搜”. 如上面的图所示:加入我们要找一个从V0到 ...
- ZOJ1204——Additive equations(DFS)
Additive equations Description We all understand that an integer set is a collection of distinct int ...
- 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)
深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...
- N皇后问题(DFS)
题目:在N*N的国际象棋棋盘上放置N个皇后彼此不受攻击(即在棋盘的任一行,任一列和任意对角线上不能放置2个皇后),求解所有摆放方案的总数. 样例输入: 1 8 样例输出: 1 92 解题思路:由于皇后 ...
- DFS做题小结
一.深入理解DFS 采用递归写法 深度优先,思路就是沿着一条路一直走,直到走到死胡同,原路返回,返回到有多条道路的地方换其他路走.直到这条支路全部都访问过了,按照原路返回,回到起点,如果起点还有别的支 ...
- 深度优先搜索DFS和广度优先搜索BFS简单解析
转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...
- DFS(深度优先搜索)
基本概念 深度优先搜索算法(Depth First Search,简称DFS):一种用于遍历或搜索树或图的算法. 沿着树的深度遍历树的节点,尽可能深的搜索树的分支.当节点v的所在边都己被探寻过或者在搜 ...
- dfs求连通块
递归 递归是什么?绝大部分人都会说:自己调用自己,刚开始我也是这样理解递归的.确实没错,递归的确是自己调用自己.递归简单的应用:编写一个能计算斐波那契数列的函数,也就是这样: int fb(int n ...
随机推荐
- 两种加载dll的方式
通过链接lib文件加载dll的话,使用过程中没法动态切换 通过loadlibrary函数动态加载的话,可以动态切换
- Advanced Installer 安装前卸载旧版本的办法
原文:Advanced Installer 安装前卸载旧版本的办法 Advanced Installer这个工具百度出来的资料太少了. 在我们平常打包的工作中,经常遇到的一个问题是,如何能在安装新版本 ...
- Android零基础入门第60节:日历视图CalendarView和定时器Chronometer
原文:Android零基础入门第60节:日历视图CalendarView和定时器Chronometer 上一期学习了AnalogClock.DigitalClock和TextClock时钟组件,本期继 ...
- UWP StorageFile StorageFolder StorageFileHelper
//获取表示指定文件系统路径中的文件夹的 StorageFolder. StorageFolder folder1 = await StorageFolder.GetFolderFromPathAsy ...
- nginx 配置https并自签名证书
2016-10-28 转载请注明出处:http://daodaoliang.com/ 作者: daodaoliang 版本: V1.0.1 邮箱: daodaoliang@yeah.net 参考链接: ...
- property的使用(事件可能就是回调函数)
TOnUserInfoShow = procedure(userName:string;userAge:Integer)of object;//定义事件模型中的回调函数原型 TUserInfo = c ...
- 海康威视频监控设备Web查看系统(一):概要篇
声明:本系列文章只提供交流与学习使用.文章中所有涉及到海康威视设备的SDK均可在海康威视官方网站下载得到.文章中所有除官方SDK意外的代码均可随意使用,任何涉及到海康威视公司利益的非正常使用由使用者自 ...
- hadoop之hive集合数据类型
除了string,boolean,date等基本数据类型之外,hive还支持三种高级数据类型: 1.ARRAY ARRAY类型是由一系列相同数据类型的元素组成,这些元素可以通过下标来访问.比如有一个A ...
- hadoop之hive&hbase互操作
大家都知道,hive的SQL操作非常方便,但是查询过程中需要启动MapReduce,无法做到实时响应. hbase是hadoop家族中的分布式数据库,与传统关系数据库不同,它底层采用列存储格式,扩展性 ...
- shell多线程
a='a1' b='b1' c='c1' d='d1' e='e1' ARR=($a $b $c $d $e) rd=`date +%N` for i in ${ARR[*]} do { ;>& ...