【摘要】 本节中,我们以今日头条为例来尝试通过分析Ajax请求来抓取网页数据的方法。这次要抓取的目标是今日头条的街拍美图,抓取完成之后,将每组图片分文件夹下载到本地并保存下来。

1. 准备工作

在本节开始之前,请确保已经安装好requests库。如果没有安装,可以参考第1章。

2. 抓取分析

在抓取之前,首先要分析抓取的逻辑。打开今日头条的首页http://www.toutiao.com/,如图6-15所示。

图6-15 首页内容

右上角有一个搜索入口,这里尝试抓取街拍美图,所以输入“街拍”二字搜索一下,结果如图6-16所示。

图6-16 搜索结果

这时打开开发者工具,查看所有的网络请求。首先,打开第一个网络请求,这个请求的URL就是当前的链接http://www.toutiao.com/search/?keyword=街拍,打开Preview选项卡查看Response Body。如果页面中的内容是根据第一个请求得到的结果渲染出来的,那么第一个请求的源代码中必然会包含页面结果中的文字。为了验证,我们可以尝试搜索一下搜索结果的标题,比如“路人”二字,如图6-17所示。

图6-17 搜索结果

我们发现,网页源代码中并没有包含这两个字,搜索匹配结果数目为0。因此,可以初步判断这些内容是由Ajax加载,然后用JavaScript渲染出来的。接下来,我们可以切换到XHR过滤选项卡,查看一下有没有Ajax请求。

不出所料,此处出现了一个比较常规的Ajax请求,看看它的结果是否包含了页面中的相关数据。

点击data字段展开,发现这里有许多条数据。点击第一条展开,可以发现有一个title字段,它的值正好就是页面中第一条数据的标题。再检查一下其他数据,也正好是一一对应的,如图6-18所示。

图6-18 对比结果

这就确定了这些数据确实是由Ajax加载的。

我们的目的是要抓取其中的美图,这里一组图就对应前面data字段中的一条数据。每条数据还有一个image_detail字段,它是列表形式,这其中就包含了组图的所有图片列表,如图6-19所示。

图6-19 图片列表信息

因此,我们只需要将列表中的url字段提取出来并下载下来就好了。每一组图都建立一个文件夹,文件夹的名称就为组图的标题。

接下来,就可以直接用Python来模拟这个Ajax请求,然后提取出相关美图链接并下载。但是在这之前,我们还需要分析一下URL的规律。

切换回Headers选项卡,观察一下它的请求URL和Headers信息,如图6-20所示。

图6-20 请求信息

可以看到,这是一个GET请求,请求URL的参数有offset、format、keyword、autoload、count和cur_tab。我们需要找出这些参数的规律,因为这样才可以方便地用程序构造出来。

接下来,可以滑动页面,多加载一些新结果。在加载的同时可以发现,Network中又出现了许多Ajax请求,如图6-21所示。

图6-21 Ajax请求

这里观察一下后续链接的参数,发现变化的参数只有offset,其他参数都没有变化,而且第二次请求的offset值为20,第三次为40,第四次为60,所以可以发现规律,这个offset值就是偏移量,进而可以推断出count参数就是一次性获取的数据条数。因此,我们可以用offset参数来控制数据分页。这样一来,我们就可以通过接口批量获取数据了,然后将数据解析,将图片下载下来即可。

3. 实战演练

我们刚才已经分析了一下Ajax请求的逻辑,下面就用程序来实现美图下载吧。

首先,实现方法get_page()来加载单个Ajax请求的结果。其中唯一变化的参数就是offset,所以我们将它当作参数传递,实现如下:

 import requests
from urllib.parse import urlencode
def get_page(offset):
params = {
'offset': offset,
'format': 'json',
'keyword': '街拍',
'autoload': 'true',
'count': '',
'cur_tab': '',
}
url = 'http://www.toutiao.com/search_content/?' + urlencode(params)
try:
response = requests.get(url)
if response.status_code == :
return response.json()
except requests.ConnectireplaceString:
return None

这里我们用urlencode()方法构造请求的GET参数,然后用requests请求这个链接,如果返回状态码为200,则调用response的json()方法将结果转为JSON格式,然后返回。

接下来,再实现一个解析方法:提取每条数据的image_detail字段中的每一张图片链接,将图片链接和图片所属的标题一并返回,此时可以构造一个生成器。实现代码如下:

 def get_images(json):
if json.get('data'):
for item in json.get('data'):
title = item.get('title')
images = item.get('image_detail')
for image in images:
yield {
'image': image.get('url'),
'title': title
}

接下来,实现一个保存图片的方法save_image(),其中item就是前面get_images()方法返回的一个字典。在该方法中,首先根据item的title来创建文件夹,然后请求这个图片链接,获取图片的二进制数据,以二进制的形式写入文件。图片的名称可以使用其内容的MD5值,这样可以去除重复。相关代码如下:

 import os
from hashlib import md5 def save_image(item):
if not os.path.exists(item.get('title')):
os.mkdir(item.get('title'))
try:
response = requests.get(item.get('image'))
if response.status_code == :
file_path = '{0}/{1}.{2}'.format(item.get('title'), md5(response.content).hexdigest(), 'jpg')
if not os.path.exists(file_path):
with open(file_path, 'wb') as f:
f.write(response.content)
else:
print('Already Downloaded', file_path)
except requests.ConnectireplaceString:
print('Failed to Save Image')

最后,只需要构造一个offset数组,遍历offset,提取图片链接,并将其下载即可:

 from multiprocessing.pool import Pool

 def main(offset):
json = get_page(offset)
for item in get_images(json):
print(item)
save_image(item) GROUP_START =
GROUP_END = if __name__ == '__main__':
pool = Pool()
groups = ([x * for x in range(GROUP_START, GROUP_END + )])
pool.map(main, groups)
pool.close()
pool.join()

这里定义了分页的起始页数和终止页数,分别为GROUP_START和GROUP_END,还利用了多线程的线程池,调用其map()方法实现多线程下载。

这样整个程序就完成了,运行之后可以发现街拍美图都分文件夹保存下来了,如图6-22所示。

图6-22 保存结果

最后,我们给出本节的代码地址:https://github.com/Python3WebSpider/Jiepai

通过本节,我们了解了Ajax分析的流程、Ajax分页的模拟以及图片的下载过程。

本节的内容需要熟练掌握,在后面的实战中我们还会用到很多次这样的分析和抓取。

来源:华为云社区 作者:崔庆才丨静觅

HDC.Cloud 华为开发者大会2020 即将于2020年2月11日-12日在深圳举办,是一线开发者学习实践鲲鹏通用计算、昇腾AI计算、数据库、区块链、云原生、5G等ICT开放能力的最佳舞台。

欢迎报名参会

【Python3网络爬虫开发实战】6.4-分析Ajax爬取今日头条街拍美图【华为云技术分享】的更多相关文章

  1. 【Python3网络爬虫开发实战】 分析Ajax爬取今日头条街拍美图

    前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:haoxuan10 本节中,我们以今日头条为例来尝试通过分析Ajax请求 ...

  2. 分析Ajax爬取今日头条街拍美图-崔庆才思路

    站点分析 源码及遇到的问题 代码结构 方法定义 需要的常量 关于在代码中遇到的问题 01. 数据库连接 02.今日头条的反爬虫机制 03. json解码遇到的问题 04. 关于response.tex ...

  3. 转:【Python3网络爬虫开发实战】6.4-分析Ajax爬取今日头条街拍美图

    [摘要] 本节中,我们以今日头条为例来尝试通过分析Ajax请求来抓取网页数据的方法.这次要抓取的目标是今日头条的街拍美图,抓取完成之后,将每组图片分文件夹下载到本地并保存下来. 1. 准备工作 在本节 ...

  4. 分析Ajax抓取今日头条街拍美图

    spider.py # -*- coding:utf-8 -*- from urllib import urlencode import requests from requests.exceptio ...

  5. 关于爬虫的日常复习(9)—— 实战:分析Ajax抓取今日头条接拍美图

  6. 分析Ajax来爬取今日头条街拍美图并保存到MongDB

    前提:.需要安装MongDB 注:因今日投票网页发生变更,如下代码不保证能正常使用 #!/usr/bin/env python #-*- coding: utf-8 -*- import json i ...

  7. python爬虫之分析Ajax请求抓取抓取今日头条街拍美图(七)

    python爬虫之分析Ajax请求抓取抓取今日头条街拍美图 一.分析网站 1.进入浏览器,搜索今日头条,在搜索栏搜索街拍,然后选择图集这一栏. 2.按F12打开开发者工具,刷新网页,这时网页回弹到综合 ...

  8. 分析Ajax请求并抓取今日头条街拍美图

    项目说明 本项目以今日头条为例,通过分析Ajax请求来抓取网页数据. 有些网页请求得到的HTML代码里面并没有我们在浏览器中看到的内容.这是因为这些信息是通过Ajax加载并且通过JavaScript渲 ...

  9. [Python3网络爬虫开发实战] 7-动态渲染页面爬取

    在前一章中,我们了解了Ajax的分析和抓取方式,这其实也是JavaScript动态渲染的页面的一种情形,通过直接分析Ajax,我们仍然可以借助requests或urllib来实现数据爬取. 不过Jav ...

随机推荐

  1. ASP.NET Core 3.0 gRPC 拦截器

    目录 ASP.NET Core 3.0 使用gRPC ASP.NET Core 3.0 gRPC 双向流 ASP.NET Core 3.0 gRPC 拦截器 一. 前言 前面两篇文章给大家介绍了使用g ...

  2. Python基本数据结构之文件操作

    用word操作一个文件的流程如下: 1.找到文件,双击打开 2.读或修改 3.保存&关闭 用python操作文件也差不多: f=open(filename) # 打开文件 f.write(&q ...

  3. 爬虫学习--Day3(小猿圈爬虫开发_1)

    爬虫基础简介 前戏: 1.你是否在夜深人静的时候,想看一些让你更睡不着的图片 2.你是否在考试或者面试前夕,想看一些具有针对性的题目和面试题 3.你是否想在杂乱的网络世界中获取你想要的数据 什么是爬虫 ...

  4. ASP.NET Core主机地址过滤HostFiltering

    前言 在ASP.Net Core2.X调用的CreateWebHostBuilder和3.X的主要区别在于WebHost的调用,CreateDefaultBuilder被Host替换,另一个区别是对C ...

  5. 1000m交叉网线最简单做法

    1-3,2-6,3-1,4-7,5-8,6-2,7-4,8-5 1,2,3,4,5,6,7,8即为网线内部8跟线编号,两头颜色和数字要对应.

  6. 详解Spring Security的HttpBasic登录验证模式

    一.HttpBasic模式的应用场景 HttpBasic登录验证模式是Spring Security实现登录验证最简单的一种方式,也可以说是最简陋的一种方式.它的目的并不是保障登录验证的绝对安全,而是 ...

  7. [UWP]使用Win2D的BorderEffect实现图片的平铺功能

    1. WPF有,而UWP没有的图片平铺功能 在WPF中只要将ImageSource的TileMode属性设置为Tile即可实现图片的平铺,具体可见WPF的这些文档: ImageBrush 类 (Sys ...

  8. 对于 TCP 三次握手的理解

    假设名叫 A 和 B 的两个人要进行通信,那么他们两人之间,首先要确保通信顺畅. 而确保通信顺畅,就要从 3 个维度,确定 8 个能力 3 个维度分别是: 1.人知道(A 知道.B 知道) 2.人(A ...

  9. nyoj 8-一种排序 (贪心)

    8-一种排序 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:9 submit:18 题目描述: 现在有很多长方形,每一个长方形都有一个编号,这个编号 ...

  10. nyoj 275-队花的烦恼一 (stack, push, pop)

    275-队花的烦恼一 内存限制:64MB 时间限制:3000ms 特判: No 通过数:11 提交数:14 难度:1 题目描述: ACM队的队花C小+经常抱怨:“C语言中的格式输出中有十六.十.八进制 ...