2019 Multi-University Training Contest 7

A. A + B = C

题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\)。

trick hash!


B.Bracket Sequences on Tree

unsolved

做法

  • 树hash,统计答案
  • 然后疯狂wa,直到特判了最后两组数据...
  • 假的AC

F. Final Exam

upsolved

题意 参加考试,确保通过 \(k\) 道题目。

复盘

  • 先是认定了,所有题都复习相同的时间。
  • 然后考虑了一下 \(m=0\) 的 Case,发现有问题。
  • 再想了想,发现可以枚举复习 \(x\) 几个题,这些题我们花均等的时间,其它题花费 0 的时间。
  • 对于确定的 \(x\),答案为 \([\frac{m}{x-k+1}]*x\)
  • 使用跳跳狗,使用三分,使用跳跳狗+三分,纷纷解体。
  • 第一步错,满盘皆输。
  • 刷 AGC。

做法

  • 一个复习方案合法,等价于复习时间前 \(n-k+1\) 少的题,总时间大于 m。
  • 前 \(n-k+1\) 题耗时总和为 \(m+1\),剩下每个题耗时大于等于 \(\lceil \frac{m+1}{n-k+1} \rceil\)

G. Getting Your Money Back

upsolved

题意 去银行取钱,已知钱在 \([l,r]\) 之间,每次可以输入一个金额,如果成功取出,耗费为 a,不成功耗费为 b,现在想保证所有钱全部取出,求最坏情况下,最小耗费。

做法

  • 如果 \(l=0\),经典 DP 问题,\(f[i]=min_{x=1}^{i}\ max(f[x]+a,f[i-x]+b)\)
  • 单峰的!甚至连决策单调性也是具有的!
  • 考虑 \(l \neq 0\),这时我们仅仅 care 区间长度,根本不在意 \(l\) 等于多少,令 \(g[x]\) 表示 \([l,l+x]\) 的答案。

H. Halt Hater

upsolved

题意 网格图中开车,求到达 \((x,y)\) 等红灯。

做法

  • 打表。
  • 发现 4 个象限具有对称性。
  • 发现每列都是等差。
  • 对角线也是等差。
  • Win 了,虽然不会证明。
  • 数学归纳一定也许大概可以证。
  • 没看懂官方题解。

K. Kejin Player

solved by rdc

题意 氪金,第 i 级有 p[i] 的概率变成 p[i+1] 级,其它的概率变成 x[i] 级

做法 \(dp[i]\) 表示从 \(i\) 级变成 \(i+1\) 级的代价。前缀和优化 DP 即可。

2019 Multi-University Training Contest 7的更多相关文章

  1. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  2. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  3. 2019 Multi-University Training Contest 8

    2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...

  4. 2019 Multi-University Training Contest 1

    2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...

  5. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

  6. 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...

  7. HDU校赛 | 2019 Multi-University Training Contest 6

    2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...

  8. HDU校赛 | 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...

  9. HDU校赛 | 2019 Multi-University Training Contest 4

    2019 Multi-University Training Contest 4 http://acm.hdu.edu.cn/contests/contest_show.php?cid=851 100 ...

随机推荐

  1. XSS危害——session劫持(转载)

    在跨站脚本攻击XSS中简单介绍了XSS的原理及一个利用XSS盗取存在cookie中用户名和密码的小例子,有些同学看了后会说这有什么大不了的,哪里有人会明文往cookie里存用户名和密码.今天我们就介绍 ...

  2. css3系列之transform 详解rotate

    rotate rotateX rotateY rotateZ rotate3d rotate: 旋转该元素,配合着transform-origin属性,transform-origin 是设置旋转点的 ...

  3. spring 的权限控制:security

    下面我们将实现关于Spring Security3的一系列教程. 最终的目标是整合Spring Security + Spring3MVC 完成类似于SpringSide3中mini-web的功能. ...

  4. C# Winfrom 自定义控件——带图片的TextBox

    效果: 描述: 本来是想用GDI在左边画图片上去的,文本是居中对齐,如果文本是左对齐,文本会把图片遮住控件长这样: 但这样做,输入框在获取焦点时候,会把图片挡住就像这样: 输入完成之后图片就会显示完整 ...

  5. 洛谷P2763题解

    吐槽一下:蜜汁UKE是什么玩意?! 题目分析: 观察题面,对于给定的组卷要求,计算满足要求的组卷方案,可以发现这是一道明显的有条件的二分图匹配问题,于是考虑建模. 建一个超级源点,一个超级汇点:源点与 ...

  6. 从原理层面掌握@RequestAttribute、@SessionAttribute的使用【一起学Spring MVC】

    每篇一句 改我们就改得:取其精华,去其糟粕.否则木有意义 前言 如果说知道@SessionAttributes这个注解的人已经很少了,那么不需要统计我就可以确定的说:知道@RequestAttribu ...

  7. JavaWeb——Servlet开发2

    1.HttpServletRequest的使用 获取Request的参数的方法. 方法getParameter将返回参数的单个值 方法getParameterValues将返回参数的值的数组 方法ge ...

  8. Flutter学习笔记(15)--MaterialApp应用组件及routes路由详解

    如需转载,请注明出处:Flutter学习笔记(15)--MaterialApp应用组件及routes路由详解 最近一段时间生病了,整天往医院跑,也没状态学东西了,现在是好了不少了,也该继续学习啦!!! ...

  9. Spring AOP JDK动态代理与CGLib动态代理区别

    静态代理与动态代理 静态代理 代理模式 (1)代理模式是常用设计模式的一种,我们在软件设计时常用的代理一般是指静态代理,也就是在代码中显式指定的代理. (2)静态代理由 业务实现类.业务代理类 两部分 ...

  10. 《大牛到底是如何阅读JDK源码的?》一起来学习一下

    前言: 如何阅读源码,是每个程序员需要面临的一项挑战,为什么需要阅读源码?从实用性的角度来看,主要有三个目的: 第一,解决手头的新问题或者新需求; 第二,真正理解一部分理论的落地实现; 第三,应对面试 ...