Flink on YARN时,如何确定TaskManager数
转自: https://www.jianshu.com/p/5b670d524fa5
答案写在最前面:Job的最大并行度除以每个TaskManager分配的任务槽数。
问题
在Flink 1.5 Release Notes中,有这样一段话,直接上截图。

这说明从1.5版本开始,Flink on YARN时的容器数量——亦即TaskManager数量——将由程序的并行度自动推算,也就是说flink run脚本的-yn/--yarncontainer参数不起作用了。那么自动推算的规则是什么呢?要弄清楚它,先来复习Flink的并行度(Parallelism)和任务槽(Task Slot)。
并行度(Parallelism)
与Spark类似地,一个Flink Job在生成执行计划时也划分成多个Task。Task可以是Source、Sink、算子或算子链(算子链有点意思,之后会另写文章详细说的)。Task可以由多线程并发执行,每个线程处理Task输入数据的一个子集。而并发的数量就称为Parallelism,即并行度。
Flink程序中设定并行度有4种级别,从低到高分别为:算子级别、执行环境(ExecutionEnvironment)级别、客户端(命令行)级别、配置文件(flink-conf.yaml)级别。实际执行时,优先级则是反过来的,算子级别最高。简单示例如下。
- 算子级别
dataStream.flatMap(new SomeFlatMapFunction()).setParallelism(4);
- 执行环境级别
streamExecutionEnvironment.setParallelism(4);
- 命令行级别
bin/flink -run --parallelism 4 example-0.1.jar
- flink-conf.yaml级别
parallelism.default: 4
任务槽(Task Slot)
Flink运行时由两个组件组成:JobManager与TaskManager,与Spark Standalone模式下的Master与Worker是同等概念。从官网抄来的图如下所示,很容易理解。

JobManager和TaskManager本质上都是JVM进程。为了提高Flink程序的运行效率和资源利用率,Flink在TaskManager中实现了任务槽(Task Slot)。任务槽是Flink计算资源的基本单位,每个任务槽可以在同一时间执行一个Task,而TaskManager可以拥有一个或者多个任务槽。
任务槽可以实现TaskManager中不同Task的资源隔离,不过是逻辑隔离,并且只隔离内存,亦即在调度层面认为每个任务槽“应该”得到taskmanager.heap.size的N分之一大小的内存。CPU资源不算在内。
TaskManager的任务槽个数在使用flink run脚本提交on YARN作业时用-ys/--yarnslots参数来指定,另外在flink-conf.yaml文件中也有默认值taskManager.numberOfTaskSlots
。一般来讲,我们设定该参数时可以将它理解成一个TaskManager可以利用的CPU核心数,因此也要根据实际情况(集群的CPU资源和作业的计算量)来确定。
确定TaskManager数
以Flink自带示例中简化的WordCount程序为例:
// 执行环境并行度设为6
env.setParallelism(6);
// Source并行度为1
DataStream<String> text = env
.readTextFile(params.get("input"))
.setParallelism(1);
DataStream<Tuple2<String, Integer>> counts = text
.flatMap(new Tokenizer())
.keyBy(0)
.sum(1);
counts.print();
用--yarnslots 3
参数来执行,即每个TaskManager分配3个任务槽。TaskManager、任务槽和任务的分布将如下图所示,方括号内的数字为并行线程的编号。

由图中可以看出,由于算子链机制的存在,KeyAgg与Sink操作链接在了一起,作为一个Task来执行。
Flink允许任务槽共享,即来自同一个Job的不同Task的Sub-Task(理解为Task的子集就行)进入同一个槽位,因此在图中也可以见到任务槽X中同时存在FlatMap[X]与KeyAgg[X]+Sink[X]。任务槽共享有两点好处:
- 能够让每个Task的Sub-Task都均摊到不同的TaskManager,避免负载倾斜。
- 不需要再计算App一共需要起多少个Task,因为作业需要的任务槽数量肯定等于Job中最大的并行度。
所以,可以得出Flink on YARN时,TaskManager的数量就是:max(parallelism) / yarnslots
(向上取整)。例如,一个最大并行度为10,每个TaskManager有两个任务槽的作业,就会启动5个TaskManager,如Web UI所示。

Flink on YARN时,如何确定TaskManager数的更多相关文章
- Apache Flink 分布式运行时环境
Tasks and Operator Chains(任务及操作链) 在分布式环境下,Flink将操作的子任务链在一起组成一个任务,每一个任务在一个线程中执行.将操作链在一起是一个不错的优化:它减少了线 ...
- flink hadoop yarn
新一代大数据处理引擎 Apache Flink https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/ 新一代大数据处 ...
- 一张图轻松掌握 Flink on YARN 应用启动全流程(上)
Flink 支持 Standalone 独立部署和 YARN.Kubernetes.Mesos 等集群部署模式,其中 YARN 集群部署模式在国内的应用越来越广泛.Flink 社区将推出 Flink ...
- Flink on Yarn模式启动流程源代码分析
此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. Flink on yarn的启动流程可以参见前面的文章 Flink on Yarn启动流程,下面主要是从源码角 ...
- Flink on Yarn的两种模式及HA
转自:https://blog.csdn.net/a_drjiaoda/article/details/88203323 Flink on Yarn模式部署始末:Flink的Standalone和on ...
- flink on yarn模式下两种提交job方式
yarn集群搭建,参见hadoop 完全分布式集群搭建 通过yarn进行资源管理,flink的任务直接提交到hadoop集群 1.hadoop集群启动,yarn需要运行起来.确保配置HADOOP_HO ...
- Flink源码阅读(一)——Flink on Yarn的Per-job模式源码简析
一.前言 个人感觉学习Flink其实最不应该错过的博文是Flink社区的博文系列,里面的文章是不会让人失望的.强烈安利:https://ververica.cn/developers-resource ...
- Flink on YARN(下):常见问题与排查思路
Flink 支持 Standalone 独立部署和 YARN.Kubernetes.Mesos 等集群部署模式,其中 YARN 集群部署模式在国内的应用越来越广泛.Flink 社区将推出 Flink ...
- Flink on yarn以及实现jobManager 高可用(HA)
on yarn https://ci.apache.org/projects/flink/flink-docs-release-1.8/ops/deployment/yarn_setup.html f ...
随机推荐
- (办公)记事本_Linux常用的目录命令
参考尚硅谷的谷粒学院:http://www.gulixueyuan.com/course/300/task/7078/show#(免费看,课程很全面,用手机登录一下就行.) .[root@localh ...
- 附002.Minikube介绍及使用
一 Minikube介绍 1.1 概述 Minikube是一种可以在本地轻松运行Kubernetes的工具.Minikube在笔记本电脑的VM中运行单节点Kubernetes集群,供希望尝试Kuber ...
- CF 1114D(538,div2) Flood Fill
https://codeforces.com/contest/1114/problem/D 题目 给一串数字,首先选择一个位置,类似于画图,然后每一轮按照以下步骤: 可以将这个位置所在的连通块改成其他 ...
- go语言之map
go语言的map就相当于python的dict 1.map的初始化 //创建map //k的类型是int,v的类型是string var test25_1 map[int]string fmt.Pri ...
- mysql 数据误删恢复
当binlog_format设置为ROW时,想查看binlog中的sql语句时,需要解密,添加这个 --base64-output=decode-rows -v
- Razor_01 第一个应用程序
自己开始从头深造 自己看了一下,开头真的不适合初学者,没有重点,对不起各位了 . 但你可以在5 分钟以后看,对于初学者还时有深大的用处的 链 接: https://pan.baidu.com/s/1V ...
- Vue中jsx的最简单用法
最终页面显示效果为 <div class="open-service" style="color: #0199f0; cursor: pointer;"& ...
- CSS学习笔记-背景属性
一.背景尺寸属性: 1.含义: 背景尺寸属性是CSS3中新增的一个属性,专门用于设置背景图片大小 2.格式: 1.1具体像素: backgro ...
- SQLi-LABS Page-1(Basic Challenges) Less11-Less22
Less-11 GET - Blind - Time based - double quotes http://10.10.202.112/sqli/Less-11/ 尝试登录: username:a ...
- 【Gradle】Groovy基础
Groovy基础 Groovy是基于JVM虚拟机的一种动态语言.每个Gradle的build脚本文件都是一个Groovy脚本文件. 字符串 在Groovy中,分号不是必需的.在Groovy中,单引号和 ...