数据存储之非关系型数据库存储----MongoDB存储
MongoDB存储----文档型数据库
利用pymongo连接MongoDB
import pymongo
client = pymongo.MongoClient(host='localhost', port=27017)
# 或 pymongo.MongoClient('mongodb://localhost:23017/')
# 默认端口为:27017# pymongo.MongoClient()方法
指定数据库
# 指定操作test数据库
# db = client.test 或 db = client['test']指定集合
# 指定一个集合要操作的集合students
# collection = db.students 或 collection = db['students']插入数据
import pymongo # 连接MongoDB
client = pymongo.MongoClient(host='localhost', port=27017) # 指定数据库
db = client.test # 指定集合
collection = db.students # 数据
student = {
'id': '',
'name': 'Jordan',
'age': 20,
'gender': 'male'
} # 利用insert_one()方法插入一条数据
result = collection.insert_one(student)
print(result) # 运行输出:<pymongo.results.InsertOneResult object at 0x11089b448>
# 在MongoDB中,每条数据其实都有一个_id属性来唯一标识。如果没有显式指明该属性,MongoDB会自动产生一个ObjectId类型的_id属性。
# 使用 insert_one()和 insert_many()方法来分别插入单条记录和多条记录插入单条数据
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client.test
collection = db.students student1 = {
'id': '',
'name': 'Lee Hua',
'age': 20,
'gender': 'male'
}
student2 = {
'id': '',
'name': 'Mike',
'age': 21,
'gender': 'male'
} result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)
# 调用inserted_ids属性可以获取数据的_id列表 # 运行输出:
<pymongo.results.InsertManyResult object at 0x110826d88>
[ObjectId('5d28b293e834575faf929428'), ObjectId('5d28b293e834575faf929429')]插入多条数据
# insert_one()方法 和 insert_many()方法
查询
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client.test
collection = db.students result = collection.find_one({'name': 'Lee Hua'})
print(result) # 输出:
{'_id': ObjectId('5d28b293e834575faf929428'), 'id': '', 'name': 'Lee Hua', 'age': 20, 'gender': 'male'}查询单条数据
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client.test
collection = db.students result = collection.find()
print(result)
for r in result:
print(r) # find()方法返回一个迭代器,用for循环逐条输出
# 输出结果:
<pymongo.cursor.Cursor object at 0x10e0f7320>
{'_id': ObjectId('5d28ae0360105a198d9d501a'), 'id': '', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('5d28ae2d8b3d004feb604874'), 'id': '', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('5d28b293e834575faf929428'), 'id': '', 'name': 'Lee Hua', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('5d28b293e834575faf929429'), 'id': '', 'name': 'Mike', 'age': 21, 'gender': 'male'}查询多条数据
# find_one()方法 和 find()方法
可以在这两个方法里面添加条件,如:
find(
{
'name': {'$regex': '^M.*'}
}
)
这里查找的是以'M'开头的名字的那些数据,$regex指定的是正则表达式,
^M.*是一条正则表达式
更多功能符号(如$regex)、数值比较符号的查看MongoDB官方文档:https://docs.mongodb.com/?searchProperty=manual
计数
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client.test
collection = db.students count = collection.count_documents(
{
'id': {'$regex': '^(2018)'}
}
)
print(count) # 输出id为2018开头的数据的条数# collection.count_documents({条件}) 方法
排序
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client.test
collection = db.students result = collection.find().sort('id', pymongo.ASCENDING)
for r in result:
print(r) # 以id升序输出所有的数据:
{'_id': ObjectId('5d28ae0360105a198d9d501a'), 'id': '', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('5d28ae2d8b3d004feb604874'), 'id': '', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('5d28b293e834575faf929428'), 'id': '', 'name': 'Lee Hua', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('5d28b293e834575faf929429'), 'id': '', 'name': 'Mike', 'age': 21, 'gender': 'male'} # sort()方法进行排序
# pymongo.ASCENDING指定升序
# pymongo.DESCENDING指定降序# sort()方法
偏移
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client.test
collection = db.students results = collection.find().sort('id', pymongo.DESCENDING).skip(1)
print(
[
result['id'] for result in results
]
) # 输出:
['', '', ''] # skip(1)表示偏移1,即忽略前面一个元素skip()方法
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client.test
collection = db.students results = collection.find().sort('id', pymongo.DESCENDING).skip(1).limit(2)
print(
[
result['id'] for result in results
]
) # 输出:
['', ''] # limit(2) 即表示限制输出的数据条数为两条limit()方法
# 数据量很大时,不使用大的偏移量来查询数据
更新
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test']
collection = db['students'] # 查询条件:age >= 20
query_condition = {
'age': {'$gte': 20}
} # 更新条件:数据的age加1
update_condition = {
'$inc': {'age': 1}
} result = collection.update_one(query_condition, update_condition)
print(result)
print(result.matched_count, result.modified_count) # 输出:
<pymongo.results.UpdateResult object at 0x110a11c88>
1 1 # 返回的结果是UpdateResul类型的
# 调用matched_count属性,获得匹配数据的条数
# 调用modified_count属性,获得影响数据的条数
# $gte : 大于等于
# $inc : 将字段递增指定的值
# updata_one()更新与筛选器匹配的单个文档update_one()方法
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test']
collection = db['students'] query_condition = {
'age': {'$gte': 20}
}
update_condition = {
'$inc': {'age': 1}
} result = collection.update_many(query_condition, update_condition)
print(result)
print(result.matched_count, result.modified_count) # 输出:
<pymongo.results.UpdateResult object at 0x111c84448>
4 4update_many()方法
# update_one()方法 和 update_many()方法
删除
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test']
collection = db['students'] result = collection.delete_one({'age': 21})
print(result.deleted_count) # delete_one()方法:删除第一条符合条件的数据
# delete_count属性:获取删除数据的条数delete_one()方法
import pymongo client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test']
collection = db['students'] result = collection.delete_many({'age': 21})
print(result.deleted_count) # delete_many()方法:删除所有符合条件的数据delete_many()方法
PyMongo的详细用法:http://api.mongodb.com/python/current/api/pymongo/collection.html
数据存储之非关系型数据库存储----MongoDB存储的更多相关文章
- NoSql非关系型数据库之MongoDB应用(三):MongoDB在项目中的初步应用
业精于勤,荒于嬉:行成于思,毁于随. 我们可以结合相关的IDE做一个简单的增删改查了,实现MongoDB在项目中的初步应用. 前提是安装了MongoDB服务和MongoDB可视化工具,没有安装的可以点 ...
- NoSql非关系型数据库之MongoDB应用(二):安装MongoDB可视化工具
业精于勤,荒于嬉:行成于思,毁于随. 我们上次说到NoSql非关系型数据库之MongoDB应用(一):安装MongoDB服务 这次我们介绍安装 NoSQL Manager for MongoDB 可 ...
- 大数据时代的数据存储,非关系型数据库MongoDB
在过去的很长一段时间中,关系型数据库(Relational Database Management System)一直是最主流的数据库解决方案,他运用真实世界中事物与关系来解释数据库中抽象的数据架构. ...
- 大数据时代的数据存储,非关系型数据库MongoDB(一)
原文地址:http://www.cnblogs.com/mokafamily/p/4076954.html 爆炸式发展的NoSQL技术 在过去的很长一段时间中,关系型数据库(Relational Da ...
- Python3爬虫(十) 数据存储之非关系型数据库MongoDB
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.非关系型数据库NoSQL全程是Not Only SQL,非关系型数据库.NoSQL是基于键值对的,不需要经过S ...
- NoSql非关系型数据库之MongoDB应用(一):安装MongoDB服务
业精于勤,荒于嬉:行成于思,毁于随. 一.MongoDB服务下载安装(windows环境安装) 1.进入官网:https://www.mongodb.com/,点击右上角的 Try Free , 2 ...
- Python进阶----数据库的基础,关系型数据库与非关系型数据库(No SQL:not only sql),mysql数据库语言基础(增删改查,权限设定)
day37 一丶Python进阶----数据库的基础,mysql数据库语言基础(增删改查,权限设定) 什么是数据库: 简称:DataBase ---->DB 数据库即存放数据的仓库, ...
- 非关系型数据库(NOSQL)和关系型数据库(SQL)区别详解
前言: 在我们的日常开发中,关系型数据库和非关系型数据库的使用已经是一个成熟的软件产品开发过程中必不可却的存储数据的工具了.那么用了这么久的关系数据库和非关系型数据库你们都知道他们之间的区别了吗?下面 ...
- 【Redis】(1)-- 关系型数据库与非关系型数据库
关系型数据库与非关系型数据库 2019-07-02 16:34:48 by冲冲 1. 关系型数据库 1.1 概念 关系型数据库,是指采用了关系模型来组织数据的数据库.关系模型指的就是二维表格模型, ...
随机推荐
- Navicat使用常见的两个问题及解决方法,提高开发效率
Navicat使用常见问题 在我们日常开发过程中,一般不会直接使用命令行来操作 MYSQL 数据库,而会选择一些图形化界面去帮助我们来进行此类操作,常用的有:SQLyog(Logo也是小海豚),Nav ...
- Oracle 的 rownum 问题
对于 Oracle 的 rownum 问题,很多资料都说不支持>,>=,=,between...and,只能用以上符号(<.<=.!=),并非说用>,>=,=,be ...
- Go语言基础之net/http
Go语言基础之net/http 2017年6月26日 Go语言内置的net/http包十分的优秀,提供了HTTP客户端和服务端的实现. net/http介绍 Go语言内置的net/http包提供了HT ...
- Transactional事务提交后触发异步方法
一.问题复现 1.场景 2个service方法, 方法A中调用方法B. 方法A 是核心业务方法,涉及多张表数据变更,为了保持数据一致,用spring事务注解:@Transactional(rollba ...
- win10 php安装redis 扩展
redis下载:https://github.com/MicrosoftArchive/redis/releases 我下载的是zip包,下载后安装redis. 开始安装php的reids扩展 查看p ...
- reduce方法应用技巧
定义和用法 reduce() 方法接收一个函数作为累加器,数组中的每个值(从左到右)开始缩减,最终计算为一个值. 注意: reduce() 对于空数组是不会执行回调函数的. 浏览器支持 方法 Chro ...
- spring5 源码深度解析----- @Transactional注解的声明式事物介绍(100%理解事务)
面的几个章节已经分析了spring基于@AspectJ的源码,那么接下来我们分析一下Aop的另一个重要功能,事物管理. 事务的介绍 1.数据库事物特性 原子性多个数据库操作是不可分割的,只有所有的操作 ...
- 两句话掌握python最难知识点——元类
千万不要被所谓“元类是99%的python程序员不会用到的特性”这类的说辞吓住.因为每个中国人,都是天生的元类使用者 学懂元类,你只需要知道两句话: 道生一,一生二,二生三,三生万物 我是谁?我从哪来 ...
- python编程基础之六
运算符和表达式 +,-,*,/, 加减乘除 %, 模运算 **, 幂运算 // 整除 运算优先级方面:** >正负号(+,-)>//,%>*,/>+,- 模运算有一 ...
- idea配置maven以及手动添加webapp目录
idea配置maven 点击右下角Configure 点击settings 3 . 设置路径 设置自动导包 4 . 点击创建新工程 5 . 选择maven点击下一步 6 . 7 . 8 . 此时,创建 ...