线段树合并学习笔记(P4556)
直入主题:
学习线段树合并.....
从名字就能看出,这个东西要合并线段树.....
线段树怎么能合并呢......
暴力合就行了啊......
一次从上往下的遍历,把所有的节点信息暴力合并,然后就没有然后了.....
有两种合并方法:
一、动态开点
就是主席树那样的模式(可持久化了),新开一个点记录新的节点信息,但是空间~巨~大~无~比~
然后可能需要删除节点(以前的,既然合并了,就不需要旧的了233....)
二、静态开点(口胡的)
像启发式合并那样,直接把a的信息全加到b上(虽然没有任何启发式),但是可能破坏a树的形态
于是放一发模板题(本蒻第一次封装结构体233)

(感觉就是主席树233)
首先,思路树上差分,但是具体怎么玩呢?
一个暴力的思路:
对于每一个给定的补给点,建一棵权值线段树,其他的点也有线段树但是是空树,然后在差分的时候直接把所有的点给合并起来,最后统计答案。
线段树维护的是最值。
注意的是:差分:a+1,b+1,lca-1,lca的父节点+1,这个父节点是为了消除向上的影响,只维护路径上的值。
注释在代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+;
int n,m;
struct edge
{
int to,next;
}e[maxn];
int head[maxn],cnt;
inline void addedge(int from,int to)
{
e[++cnt].next=head[from];
e[cnt].to=to;
head[from]=cnt;
}
int dep[maxn];
int f[maxn][];
int dfs(int u,int fa)
{
dep[u]=dep[fa]+;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v==fa)
continue;
dfs(v,u);
f[v][]=u;
}
}
int rt[maxn];
struct segtree//第一次封装结构体
{
int lc[maxn*],rc[maxn*],ma[maxn*],id[maxn*],root=;
void pushup(int p)//更新最值
{
if(ma[lc[p]]>=ma[rc[p]])
{
ma[p]=ma[lc[p]];id[p]=id[lc[p]];//值得注意的是:这个id是记录答案的,所以要一起更新
}
else
{
ma[p]=ma[rc[p]];id[p]=id[rc[p]];
}
}
int merge(int a,int b,int l,int r)
{
if(!a||!b)//如果一个是空的,那就返回有值的那个节点
return a+b;
if(l==r)
{
ma[a]=ma[a]+ma[b],id[a]=l;//如果是叶节点就更新
return a;
}
int mid=l+r>>;
lc[a]=merge(lc[a],lc[b],l,mid);//向下合并
rc[a]=merge(rc[a],rc[b],mid+,r);//向下合并
pushup(a);//记得更新
return a;
}
void insert(int &x,int l,int r,int p,int k)
{
if(x==)
x=++root;//十分类似主席树的插入
if(l==r)
{
id[x]=l;
ma[x]+=k;
return;
}
int mid=l+r>>;
if(p<=mid)insert(lc[x],l,mid,p,k);
else insert(rc[x],mid+,r,p,k);
pushup(x);
}
}T;
int lca(int a,int b)//平淡无奇的lca
{
if(dep[a]<dep[b])
swap(a,b);
for(int i=;i>=;i--)
{
if(dep[b]<=dep[a]-(<<i))
a=f[a][i];
}
if(a==b)
return a;
for(int i=;i>=;i--)
{
if(f[a][i]!=f[b][i])
{
a=f[a][i];
b=f[b][i];
}
}
return f[a][];
}
int ans[maxn];
void dfsans(int u,int fa)
{
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(v==fa)
continue;
dfsans(v,u);
rt[u]=T.merge(rt[u],rt[v],,);//合并
}
ans[u]=T.id[rt[u]];//更新答案
if(T.ma[rt[u]]==)
ans[u]=;//记得特判0的情况
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y);
addedge(y,x);
}
dfs(,);
for(int i=;i<=;i++)
{
for(int j=;j<=n;j++)
{
f[j][i]=f[f[j][i-]][i-];
}
}
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int u=lca(x,y);
T.insert(rt[u],,,z,-);
T.insert(rt[x],,,z,);
T.insert(rt[y],,,z,);
T.insert(rt[f[u][]],,,z,-);
}
dfsans(,);
for(int i=;i<=n;i++)
printf("%d\n",ans[i]);
return ;
}
(完)
线段树合并学习笔记(P4556)的更多相关文章
- P4556 [Vani有约会]雨天的尾巴(线段树合并+lca)
P4556 [Vani有约会]雨天的尾巴 每个操作拆成4个进行树上差分,动态开点线段树维护每个点的操作. 离线处理完向上合并就好了 luogu倍增lca被卡了5分.....于是用rmq维护.... 常 ...
- P4556 [Vani有约会]雨天的尾巴 (线段树合并)
P4556 [Vani有约会]雨天的尾巴 题意: 首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋 ...
- 2018.08.28 洛谷P4556 [Vani有约会]雨天的尾巴(树上差分+线段树合并)
传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h& ...
- P4556 [Vani有约会]雨天的尾巴(线段树合并)
传送门 一道线段树合并 首先不难看出树上差分 我们把每一次修改拆成四个,在\(u,v\)分别放上一个,在\(lca\)和\(fa[lca]\)各减去一个,那么只要统计一下子树里的总数即可 然而问题就在 ...
- 线段树合并&&启发式合并笔记
这俩东西听起来很高端,实际上很好写,应用也很多~ 线段树合并 线段树合并,顾名思义,就是建立一棵新的线段树保存原有的两颗线段树的信息. 考虑如何合并,对于一个结点,如果两颗线段树都有此位置的结点,则直 ...
- P4556 雨天的尾巴 线段树合并
使用线段树合并,每个节点维护一棵权值线段树,下标为救济粮种类,区间维护数量最多的救济粮编号(下标).所以每个节点答案即为\(tre[rot[x]]\). 然后运用树上点的差分思想,对于分发路径\(u, ...
- P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并 (树上差分+线段树合并)
显然的树上差分问题,最后要我们求每个点数量最多的物品,考虑对每个点建议线段树,查询子树时将线段树合并可以得到答案. 用动态开点的方式建立线段树,注意离散化. 1 #include<bits/st ...
- Subtree Minimum Query CodeForces - 893F (线段树合并+线段树动态开点)
题目链接:https://cn.vjudge.net/problem/CodeForces-893F 题目大意:给你n个点,每一个点有权值,然后这n个点会构成一棵树,边权为1.然后有q次询问,每一次询 ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
随机推荐
- gorilla/mux类库解析
golang自带的http.SeverMux路由实现简单,本质是一个map[string]Handler,是请求路径与该路径对应的处理函数的映射关系.实现简单功能也比较单一: 不支持正则路由, 这个是 ...
- 做高逼格程序员之说走就走的「Windows」
简介:随着移动固态硬盘越来越便宜,网上逐渐出来一个黑科技.Windows To GO见名知意.简单来说就是在U盘或者是移动固态硬盘上安装Windows系统.达到即插即用. WTG 简介 Windows ...
- 网页布局——float浮动布局
我的主要参考资料是[Object object]的文章 float 布局应该是目前各大网站用的最多的一种布局方式了,但是也特别复杂,这里详细讲一下 首先,什么是浮动? 浮动元素是脱离文档流的,但不脱离 ...
- Java中NIO及基础实现
NIO:同步非阻塞IO 来源:BIO是同步阻塞IO操作,当线程在处理任务时,另一方会阻塞着等待该线程的执行完毕,为了提高效率,,JDK1.4后,引入NIO来提升数据的通讯性能 NIO中采用Reacto ...
- git的下载及简单使用一
git 是世界上最先进的分布式版本控制系统 常用的git网站 GitHub gitee(码云) git的下载地址 https://git-scm.com/downloads 而后根据计算机的系统选择相 ...
- django中app分组
08.13自我总结 django中app分组 一.django路由系统app进行分组 1.创建app 使用pycharm创建django的时候, 加上app的名字,后续多个app只需复制粘贴之前app ...
- [POJ3523]The Morning after Halloween
Description You are working for an amusement park as an operator of an obakeyashiki, or a haunted ho ...
- 使用Spring 或Spring Boot实现读写分离( MySQL实现主从复制)
http://blog.csdn.net/jack85986370/article/details/51559232 http://blog.csdn.net/neosmith/article/det ...
- opencv::凸包-Convex Hull
概念介绍 什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部. 正式定义:包含点集合S中所有点的最小凸多边形称为凸包 Graham扫描算法 首先选 ...
- 让搭建在 Github Pages 上的 Hexo 博客可以被 Google 搜索到
title: 让搭建在Github Pages上的Hexo博客可以被Google搜索到 date: 2019-05-30 23:35:44 tags: 配置 --- 准备工作 搭建好的博客 npm & ...