logistic回归介绍以及原理分析
1.什么是logistic回归?
logistic回归虽然说是回归,但确是为了解决分类问题,是二分类任务的首选方法,简单来说,输出结果不是0就是1
举个简单的例子:
癌症检测:这种算法输入病理图片并且应该辨别患者是患有癌症(1)或没有癌症(0)
2.logistic回归和线性回归的关系
逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。
逻辑回归假设因变量 y 服从二项分布,而线性回归假设因变量 y 服从高斯分布。
因此与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。
可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。
换种说法:
线性回归,直接可以分为两类,
但是对于图二来说,在角落加上一块蓝色点之后,线性回归的线会向下倾斜,参考紫色的线,
但是logistic回归(参考绿色的线)分类的还是很准确,logistic回归在解决分类问题上还是不错的
3.logistic回归的原理
Sigmoid函数:
曲线:
之后推导公式中会用到:
我们希望随机数据点被正确分类的概率最大化,这就是最大似然估计。
最大似然估计是统计模型中估计参数的通用方法。
你可以使用不同的方法(如优化算法)来最大化概率。
牛顿法也是其中一种,可用于查找许多不同函数的最大值(或最小值),包括似然函数。也可以用梯度下降法代替牛顿法。
既然是为了解决二分类问题,其实也就是概率的问题,分类其实都是概率问题,
那咱们先看个概率的问题:
假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。
我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。
现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。
这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。
假如在前面的一百次重复记录中,
有七十次是白球,请问罐中白球所占的比例最有可能是多少?
解答:
假设白球的概率是p,黑球的概率是1-p
取出100个球,70是白球,30个是黑球,概率:p**70*(1-p)**30
要求出白球所占比例最有可能是多少,其实就是最大似然估计,求导令导函数等于0,求出概率
logistic回归介绍以及原理分析的更多相关文章
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- 第七篇:Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- 转载:AbstractQueuedSynchronizer的介绍和原理分析
简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...
- AbstractQueuedSynchronizer的介绍和原理分析(转)
简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...
- Servlet过滤器介绍之原理分析
zhangjunhd 的BLOG 写留言去学院学习发消息 加友情链接进家园 加好友 博客统计信息 51CTO博客之星 用户名:zhangjunhd 文章数:110 评论数:858 访问量:19 ...
- Hadoop数据管理介绍及原理分析
Hadoop数据管理介绍及原理分析 最近2014大数据会议正如火如荼的进行着,Hadoop之父Doug Cutting也被邀参加,我有幸听了他的演讲并获得亲笔签名书一本,发现他竟然是左手写字,当然这个 ...
- AbstractQueuedSynchronizer的介绍和原理分析
简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...
- 转:AbstractQueuedSynchronizer的介绍和原理分析
引自:http://ifeve.com/introduce-abstractqueuedsynchronizer/ 简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同 ...
- ConcrrentSkipListMap介绍和原理分析
一.前言: JDK为我们提供了很多Map接口的实现,使得我们可以方便地处理Key-Value的数据结构. 当我们希望快速存取<Key, Value>键值对时我们可以使用HashMap. 当 ...
随机推荐
- 设计模式C++描述----15.策略(Strategy)模式
一. 举例说明 以前做了一个程序,程序的功能是评价几种加密算法时间,程序的使用操作不怎么变,变的是选用各种算法. 结构如下: Algorithm:抽象类,提供算法的公共接口. RSA_Algorith ...
- 虚拟环境:virtualenv与virtualenvwrapper
前言: 在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的库的问题: 亦或者是在开发过程中不想让物理环境里充斥各种各样的库,引发未来的依赖灾难. 此时,我们需要对于不同的 ...
- 2018.8.7 python3 for循环中的else语句
for else 简述 用break关键字终止当前循环就不会执行当前的else语句,而使用continue关键字快速进入下一论循环,或者没有使用其他关键字,循环的正常结束后,就会触发else ...
- linux sudo root 权限绕过漏洞(CVE-2019-14287)
0x01 逛圈子社区论坛 看到了 linux sudo root 权限绕过漏洞(CVE-2019-14287) 跟着复现下 综合来说 这个漏洞作用不大 需要以下几个前提条件 1.知道当前普通用户的密 ...
- 【XSY2985】【BZOJ1367】【Baltic2004】sequence
考虑两种情况: 1.\(a_1\)<\(a_2\)<\(a_3\)<\(a_4\)...<\(a_n\) 直接令\(b_i\)=\(a_i\),最小. 2.\(a_1\)> ...
- 【XSY2344】K-th String
Description Alice有 n(n≤26) 张牌,牌上分别标有前 n 个英文小写字母.例如,如果 n=3 ,则Alice有3张牌,分别标有"a", "b&quo ...
- Scrapy爬取豆瓣图书数据并写入MySQL
项目地址 BookSpider 介绍 本篇涉及的内容主要是获取分类下的所有图书数据,并写入MySQL 准备 Python3.6.Scrapy.Twisted.MySQLdb等 演示 代码 一.创建项目 ...
- Android9.0 SystemUI 网络信号栏定制修改
前情提要 Android 8.1平台SystemUI 导航栏加载流程解析 9.0 改动点简要说明 1.新增 StatusBarMobileView 替代 SignalClusterView,用以控制信 ...
- 在VMware环境下安装CentOS7
1. 软件准备: 推荐使用VMware,在这里我使用的是VMware15 映像:可以去官网下载,没有的话也可以在下方链接里下载 链接:https://pan.baidu.com/s/1r_7K-UI0 ...
- 小程序 数字过千 以K显示
先新建一个 wxs 文件 每一个 .wxs 文件和 <wxs> 标签都是一个单独的模块. 每个模块都有自己独立的作用域.即在一个模块里面定义的变量与函数,默认为私有的,对其他模块不可见. ...