1.什么是logistic回归?

logistic回归虽然说是回归,但确是为了解决分类问题,是二分类任务的首选方法,简单来说,输出结果不是0就是1

举个简单的例子:

癌症检测:这种算法输入病理图片并且应该辨别患者是患有癌症(1)或没有癌症(0)

2.logistic回归和线性回归的关系

逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。

逻辑回归假设因变量 y 服从二项分布,而线性回归假设因变量 y 服从高斯分布。

因此与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。

可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。

换种说法:

线性回归,直接可以分为两类,

但是对于图二来说,在角落加上一块蓝色点之后,线性回归的线会向下倾斜,参考紫色的线,

但是logistic回归(参考绿色的线)分类的还是很准确,logistic回归在解决分类问题上还是不错的

3.logistic回归的原理

Sigmoid函数:

曲线:

之后推导公式中会用到:

我们希望随机数据点被正确分类的概率最大化,这就是最大似然估计。

最大似然估计是统计模型中估计参数的通用方法。

你可以使用不同的方法(如优化算法)来最大化概率。

牛顿法也是其中一种,可用于查找许多不同函数的最大值(或最小值),包括似然函数。也可以用梯度下降法代替牛顿法。

既然是为了解决二分类问题,其实也就是概率的问题,分类其实都是概率问题,

那咱们先看个概率的问题:

假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。

我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。

现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。

这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。
假如在前面的一百次重复记录中,
有七十次是白球,请问罐中白球所占的比例最有可能是多少?

解答:

假设白球的概率是p,黑球的概率是1-p

取出100个球,70是白球,30个是黑球,概率:p**70*(1-p)**30

要求出白球所占比例最有可能是多少,其实就是最大似然估计,求导令导函数等于0,求出概率

logistic回归介绍以及原理分析的更多相关文章

  1. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  2. 第七篇:Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  3. 转载:AbstractQueuedSynchronizer的介绍和原理分析

    简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...

  4. AbstractQueuedSynchronizer的介绍和原理分析(转)

    简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...

  5. Servlet过滤器介绍之原理分析

    zhangjunhd 的BLOG     写留言去学院学习发消息 加友情链接进家园 加好友 博客统计信息 51CTO博客之星 用户名:zhangjunhd 文章数:110 评论数:858 访问量:19 ...

  6. Hadoop数据管理介绍及原理分析

    Hadoop数据管理介绍及原理分析 最近2014大数据会议正如火如荼的进行着,Hadoop之父Doug Cutting也被邀参加,我有幸听了他的演讲并获得亲笔签名书一本,发现他竟然是左手写字,当然这个 ...

  7. AbstractQueuedSynchronizer的介绍和原理分析

    简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...

  8. 转:AbstractQueuedSynchronizer的介绍和原理分析

    引自:http://ifeve.com/introduce-abstractqueuedsynchronizer/ 简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同 ...

  9. ConcrrentSkipListMap介绍和原理分析

    一.前言: JDK为我们提供了很多Map接口的实现,使得我们可以方便地处理Key-Value的数据结构. 当我们希望快速存取<Key, Value>键值对时我们可以使用HashMap. 当 ...

随机推荐

  1. Alpha阶段--第七周Scrum Meeting

    任务内容 本次会议为第六周的Scrum Meeting会议 召开时间为周日下午5点,在潮音餐厅召开,召开时间约为30分钟,对已经完成项目的总结和对今后项目设计的展望 队员 任务 张孟宇 “我的”界面代 ...

  2. Vue中Form表单验证无法消除验证问题

    iView的表单api给出了一个resetFields方法,用于重置整个表单输入的内容并清除验证提示. 但是有时候需要只消除部分的iview的resetFields方法源码是这样的resetField ...

  3. MinIO 分布式集群搭建

    MinIO 分布式集群搭建 分布式 Minio 可以让你将多块硬盘(甚至在不同的机器上)组成一个对象存储服务.由于硬盘分布在不同的节点上,分布式 Minio 避免了单点故障. Minio 分布式模式可 ...

  4. 欧拉路&&欧拉回路

    T1是欧拉路板子,但我不会,直接爆炸.. 这玩意就是个dfs,但我以前一直以为欧拉路只能$O(nm)$求 今天才知道可以$O(n+m)$ 欧拉路判定: 无向:起点终点为奇度点,其余偶度 有向:起点终点 ...

  5. NOIP 模拟赛 23 T4 大逃亡O(二分+广搜)(∩_∩)O

    题目描述 给出数字N(1≤N≤10000),X(1≤x≤1000),Y(1≤Y≤1000),代表有N个敌人分布一个X行Y列的矩阵上,矩形的行号从0到X-1,列号从0到Y-1再给出四个数字x1,y1,x ...

  6. LINUX 内核移植以及网卡驱动添加

    我用的板子是sama5d3xek,原来板子内核是linux-at91-3.13,升级使用linux-at91-4.10 首先去官网下载一个linux—at91-4.10压缩包,然后在ubuntu里解压 ...

  7. Uva 227-Puzzle 解题报告

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. JVM 中你不得不知的一些参数

    有的同学虽然写了一段时间 Java 了,但是对于 JVM 却不太关注.有的同学说,参数都是团队规定好的,部署的时候也不用我动手,关注它有什么用,而且,JVM 这东西,听上去就感觉很神秘很高深的样子,还 ...

  9. PHP防止客户端多次点击

    PHP防止客户端多次点击 第一种用ip判断 第二种就是用 用户名第三种就是cookie仅限 H5第四种 用swoole 用swoole id

  10. MQ基本应用场景

    简介 消息队列 MQ 既可为分布式应用系统提供异步解耦和削峰填谷的能力,同时也具备互联网应用所需的海量消息堆积.高吞吐.可靠重试等特性. 应用场景 削峰填谷:诸如秒杀.抢红包.企业开门红等大型活动时皆 ...