bzoj 2001 CITY 城市建设 cdq分治
题解:
对整个修改的区间进行分治。对于当前修改区间来说,我们对整幅图中将要修改的边权都先改成-inf,跑一遍最小生成树,然后对于一条树边并且他的权值不为-inf,那么这条边一定就是树边了。然后我们把这些点都缩成一个点。然后,我们继续对当前修改区间来说,我们把要修改的边的边权都修改成inf,跑一遍最小生成树,然后对于一条非树边来说,他的边权不为inf,那么这条边一点是非树边了,然后我们每层缩点,减边,这样图就会越来越小,然后当l == r的时候,我们还原修改操作,最后把跑最小生成树计算答案。
一道神奇的cdq题目。
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod = (int)1e9+;
const int N = 1e5 + ;
struct Node{
int u, v, c, id;
bool operator < (const Node & x) const{
return c < x.c;
}
}e[][N], f[N], g[N];
int a[N], b[N], ct[N], mapid[N];
int pre[N];
int to[N];
void link(int u, int v){
mapid[to[v]] = ;
mapid[u] = v;
to[v] = u;
}
int Find(int x){
if(x == pre[x]) return x;
return pre[x] = Find(pre[x]);
}
LL ans[N];
void Clear(int tot){
for(int i = ; i <= tot; i++){
pre[f[i].u] = f[i].u;
pre[f[i].v] = f[i].v;
}
}
void contraction(int &tot, LL &sum){
Clear(tot);
sort(f+, f++tot);
int u, v, zz = ;
for(int i = ; i <= tot; i++){
u = Find(f[i].u), v = Find(f[i].v);
if(u != v){
pre[u] = v;
if(f[i].c != -inf){
sum += f[i].c;
g[++zz] = f[i];
}
}
}
Clear(tot);
for(int i = ; i <= zz; i++){
u = Find(g[i].u); v = Find(g[i].v);
pre[u] = v;
}
zz = ;
for(int i = ; i <= tot; i++){
u = Find(f[i].u), v = Find(f[i].v);
if(u != v){
f[++zz] = f[i];
f[zz].u = u;
f[zz].v = v;
mapid[f[i].id] = zz;
}
}
tot = zz;
return ;
}
void reduction(int &tot){
Clear(tot);
sort(f+, f++tot);
int u, v, zz = ;
for(int i = ; i <= tot; i++){
u = Find(f[i].u); v = Find(f[i].v);
if(u != v){
pre[u] = v;
f[++zz] = f[i];
}
else if(f[i].c == inf)
f[++zz] = f[i];
}
tot = zz;
return ;
}
void cdq(int l, int r, int now, int tot, LL sum){
if(l == r) ct[a[l]] = b[l];
for(int i = ; i <= tot; i++){
e[now][i].c = ct[e[now][i].id];
mapid[e[now][i].id] = i;
//link(e[now][i])
f[i] = e[now][i];
}
if(l == r){
ans[l] = sum;
Clear(tot);
sort(f+, f++tot);
int u, v;
for(int i = ; i <= tot; i++){
u = Find(f[i].u), v = Find(f[i].v);
if(u != v){
pre[u] = v;
ans[l] += f[i].c;
}
}
return ;
}
for(int i = l; i <= r; i++) f[mapid[a[i]]].c = -inf;
contraction(tot, sum);
for(int i = l; i <= r; i++) f[mapid[a[i]]].c = inf;
reduction(tot);
for(int i = ; i <= tot; i++) e[now+][i] = f[i];
int mid = l+r >> ;
cdq(l, mid, now+, tot, sum);
cdq(mid+, r, now+, tot, sum); }
int main(){
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
for(int i = ; i <= m; i++){
scanf("%d%d%d", &e[][i].u, &e[][i].v, &e[][i].c);
e[][i].id = i;
ct[i] = e[][i].c;
}
for(int i = ; i <= q; i++)
scanf("%d%d", &a[i], &b[i]);
cdq(,q,,m,);
for(int i = ; i <= q; ++i)
printf("%lld\n", ans[i]);
return ;
}
bzoj 2001 CITY 城市建设 cdq分治的更多相关文章
- bzoj 2001: City 城市建设 cdq
题目 PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少的道路使得国内所有 ...
- BZOJ2001 [Hnoi2010]City 城市建设 CDQ分治
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MB Description PS国是一个拥有诸多城市的大国,国王Lou ...
- BZOJ 2001: [Hnoi2010]City 城市建设
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1132 Solved: 555[Submit][ ...
- 【BZOJ2001】 [Hnoi2010]City 城市建设
BZOJ2001 [Hnoi2010]City 城市建设 Solution 我们考虑一下这个东西怎么求解? 思考无果...... 咦? 好像可以离线cdq,每一次判断一下如果这条边如果不选就直接删除, ...
- Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治
Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治 题面 \(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\).定义一个元素的 ...
- BZOJ2001 [Hnoi2010]City 城市建设 【CDQ分治 + kruskal】
题目链接 BZOJ2001 题解 CDQ分治神题... 难想难写.. 比较朴素的思想是对于每个询问都求一遍\(BST\),这样做显然会爆 考虑一下时间都浪费在了什么地方 我们每次求\(BST\)实际上 ...
- BZOJ2001: [Hnoi2010]City 城市建设
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2001 cdq分治+重建图. 可以保留当前一定会被选的非修改边然后把点缩起来.这样的话每次点数至 ...
- 【bzoj2001】 Hnoi2010—City 城市建设
http://www.lydsy.com/JudgeOnline/problem.php?id=2001 (题目链接) 题意 给出一张无向图,$m$组操作,每次修改一条边的权值,对于每次操作输出修改之 ...
- BZOJ 3295 动态逆序对 | CDQ分治
BZOJ 3295 动态逆序对 这道题和三维偏序很类似.某个元素加入后产生的贡献 = time更小.pos更小.val更大的元素个数 + time更小.pos更大.val更小的元素个数. 分别用类似C ...
随机推荐
- 【iOS】iOS viewDidLoad 方法名问题
这两天在调试一个项目,跳转到一个页面的时候总是不显示标题栏(当然也没有标题栏的返回按钮),搞了好久,今天总算找到了问题:之前的开发人员竟然把 viewDidLoad 这个基本的方法名写成了 views ...
- IDEA自学
使用Eclipse很长时间了,想换个IDE用,都说IDEA好用,今天试试 百度了一下IDEA,了解到IDEA社区版免费,上百度,下载个社区版(exe,zip两种)懒人选择exe 手动安装别怕安错,只管 ...
- EasyUI combobox下拉列表实现搜索过滤(模糊匹配)
项目中的某个下拉列表长达200多个项,这么巨大的数量一个一个找眼镜都得看花,于是就得整了个搜索功能.看网上别人帖子有只能前缀匹配的方案,但只能前缀匹配的话用起来也不是很方便.于是就记录一下模糊匹配的方 ...
- mcrp 对接软件换
如何配置UniMRCP Server的启动选项 UniMRCP Server的配置参数,比如:ASR server IP 地址.输出目录. 在哪儿设置这些自定义参数,在插件中如何获取这些参数. 修改 ...
- python使用pip安装第三方库以及镜像使用豆瓣源安装第三方库
2018/8/7 在使用pip安装pynum第三方库时的随笔 所有的前提都是你成功安装了pip 首先第一步 打开命令提示符 输入pip show pip 查看当前pip版本 然后可以上官网搜索一下 ...
- Hystrix超时测试
package com.cookie.test; import com.netflix.hystrix.HystrixCommand; import com.netflix.hystrix.Hystr ...
- 深入剖析 RabbitMQ —— Spring 框架下实现 AMQP 高级消息队列协议
前言 消息队列在现今数据量超大,并发量超高的系统中是十分常用的.本文将会对现时最常用到的几款消息队列框架 ActiveMQ.RabbitMQ.Kafka 进行分析对比.详细介绍 RabbitMQ 在 ...
- vscode 配置 nodejs 开发环境
1.配置 cnpm 镜像 (国内淘宝镜像网速更快) npm install -g cnpm --registry=https://registry.npm.taobao.org 2.配置智能提示 安装 ...
- Python爬虫视频教程
├─第1章_[第0周]网络爬虫之前奏 │ ├─第1节_"网络爬虫"课程内容导学 │ │ 第1部分_全课程内容导学.mp4 │ │ 第2部分_全课程内容导学(WS00单元)学习资料. ...
- ubuntu 开机进入grub rescue> 解决办法(nvme固态硬盘)
起因: 我是在windows下格式化了ubuntu的盘,然后重新安装ubuntu就出现了这种问题.卸载ubuntu的正确姿势,要去查一下,千万不要直接格式化. 解决方法: 1. 先使用ls命令,找到 ...