题目传送门


分析

两点之间的最小距离其实是由两点高度最大值决定的,

求出长度为 \(n\) 的排列所需距离的方案数,剩下还能放的距离可以用插板法放进去。

也就是 \(\sum_{i=1}^{n^2}f_i*\binom{m-i+n}{n}\)

设 \(dp[i][j][k]\) 表示 \(1\sim i\) 被分成 \(j\) 段所需距离为 \(k\) 的方案数。

新开一段就是 \(dp[i][j+1][k+1]+=dp[i-1][j][k]*(j+1)\)(有 \(j+1\) 个位置可以选)

合并到一段开头或结尾就是 \(dp[i][j][k+i]+=dp[i-1][j][k]*(2*j)\)

合并两段就是 \(dp[i][j-1][k+(i*2-1)]+=dp[i-1][j][k]*(j-1)\)(有 \(j-1\) 个位置可以选)

最后的 \(f_k\) 就是 \(dp[n][1][k]\),时间复杂度 \(O(n^4)\)

考虑一下排列组合怎么求,由于模数不一定是质数,

我一开始以为要质因数分解,写完之后发现其实可以把 \(x+n\) 加进去之后再将 \(x\) 删掉,

删除的过程实际上直接用最大公约数删除就可以了。

这样的时间复杂度是 \(O(n^3\log m)\) 的。

其实还有一种方法是利用杨辉三角的递推公式矩阵加速递推,

然后再用杨辉三角把所有的值都求出来,虽然复杂度相同,不过常数有点大。

注意第一种方法求单个组合数实际上是 \(O(n\log m)\),但是由于 \(R-L\) 在平方范围内,所以看起来是立方的。

并且通过第一种方法(\(C(a,b)\) 的 \(b\) 固定)用杨辉三角倒推回去就可以在 \(O(n^2\log m)\) 的复杂度下得到一行的组合数。

但是用杨辉三角的方法(\(C(a,b)\) 的 \(a\) 固定)一定是三次方的,所以还是不要用矩阵乘法吧。


代码(矩阵乘法)

#include <iostream>
using namespace std;
const int N=111;
struct maix{int p[N][N];}A,ANS;
int dp[N][N*N],n,m,mod,L,R,mid,ans;
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
maix mul(maix A,maix B,int t){
maix C;
for (int i=0;i<=t;++i)
for (int j=0;j<=n;++j){
C.p[i][j]=0;
for (int k=0;k<=n;++k)
Mo(C.p[i][j],1ll*A.p[i][k]*B.p[k][j]%mod);
}
return C;
}
int main(){
ios::sync_with_stdio(0);
cin>>n>>m>>mod,dp[1][1]=1,mid=(n+1)>>1;
L=n*(n+1)/2,R=n*(n+3)-mid*(mid+2);
if (L>m){
cout<<0;
return 0;
}
if (R>m) R=m;
for (int i=2;i<=n;++i){
for (int k=R;k;--k)
for (int j=1;j<i;++j)
if (dp[j][k]){
int t=dp[j][k];
if (j>1&&k+(i*2-1)<=R) Mo(dp[j-1][k+(i*2-1)],t*(j-1ll)%mod);
if (k+i<=R) Mo(dp[j][k+i],2ll*t*j%mod);
if (k<R) Mo(dp[j+1][k+1],t*(j+1ll)%mod);
dp[j][k]=0;
}
}
A.p[0][0]=ANS.p[0][0]=1;
for (int i=1;i<=n;++i)
A.p[i-1][i]=A.p[i][i]=1;
for (int t=m-R+n;t;t>>=1,A=mul(A,A,n))
if (t&1) ANS=mul(ANS,A,0);
for (int i=R;i>=L;--i){
if (dp[1][i]) Mo(ans,1ll*dp[1][i]*ANS.p[0][n]%mod);
for (int j=n;j;--j) Mo(ANS.p[0][j],ANS.p[0][j-1]);
}
cout<<ans;
return 0;
}

代码(插入 \(x+n\) 再删除 \(x\))

#include <iostream>
using namespace std;
const int N=111;
int dp[N][N*N],n,m,mod,L,R,mid,ans,a[N],o=1;
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int main(){
ios::sync_with_stdio(0);
cin>>n>>m>>mod,dp[1][1]=1,mid=(n+1)>>1;
L=n*(n+1)/2,R=n*(n+3)-mid*(mid+2);
if (L>m){
cout<<0;
return 0;
}
if (R>m) R=m;
for (int i=2;i<=n;++i){
for (int k=R;k;--k)
for (int j=1;j<i;++j)
if (dp[j][k]){
int t=dp[j][k];
if (j>1&&k+(i*2-1)<=R) Mo(dp[j-1][k+(i*2-1)],t*(j-1ll)%mod);
if (k+i<=R) Mo(dp[j][k+i],2ll*t*j%mod);
if (k<R) Mo(dp[j+1][k+1],t*(j+1ll)%mod);
dp[j][k]=0;
}
}
for (int i=1;i<=n;++i) a[i]=m-R+n-i+1;
for (int i=2;i<=n;++i)
for (int j=1,x=i;j<=n&&x>1;++j){
int GCD=gcd(a[j],x);
x/=GCD,a[j]/=GCD;
}
for (int i=R;i>=L;--i){
int now=1;
for (int j=1;j<=n;++j) now=1ll*now*a[j]%mod;
if (dp[1][i]) Mo(ans,1ll*dp[1][i]*now%mod);
a[o]=m-i+n+1,o=o%n+1;
for (int j=1,x=m-i+1;j<=n&&x>1;++j){
int GCD=gcd(a[j],x);
x/=GCD,a[j]/=GCD;
}
}
cout<<ans;
return 0;
}

#排列组合,dp#LOJ 6069 「2017 山东一轮集训 Day4」塔的更多相关文章

  1. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  2. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  3. [LOJ#6068]. 「2017 山东一轮集训 Day4」棋盘[费用流]

    题意 题目链接 分析 考虑每个棋子对对应的横向纵向的极大区间的影响:记之前这个区间中的点数为 \(x\) ,那么此次多配对的数量即 \(x\) . 考虑费用流,\(S\rightarrow 横向区间 ...

  4. LOJ 6068「2017 山东一轮集训 Day4」棋盘

    题意 一个 \(n\times n\) 的棋盘上面有若干障碍物. 定义两个棋子可以互相攻击当且仅当这两个棋子的横坐标或纵坐标相等而且中间不能隔着障碍物.(可以隔棋子) 有 \(q\) 次询问,每次询问 ...

  5. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

  6. loj6068. 「2017 山东一轮集训 Day4」棋盘 二分图,网络流

    loj6068. 「2017 山东一轮集训 Day4」棋盘 链接 https://loj.ac/problem/6068 思路 上来没头绪,后来套算法,套了个网络流 经典二分图 左边横,右边列 先重新 ...

  7. loj #6077. 「2017 山东一轮集训 Day7」逆序对

    #6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...

  8. LOJ #6074. 「2017 山东一轮集训 Day6」子序列

    #6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...

  9. loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)

    题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...

  10. LOJ#6075. 「2017 山东一轮集训 Day6」重建

    题目描述: 给定一个 n个点m 条边的带权无向连通图 ,以及一个大小为k 的关键点集合S .有个人要从点s走到点t,现在可以对所有边加上一个非负整数a,问最大的a,使得加上a后,满足:s到t的最短路长 ...

随机推荐

  1. MyBatisSystemException: nested exception is org.apache.ibatis.exceptions.TooManyResultsException: Expected one result (or null) to be returned by selectOne(), but found: 2

    描述: 2021-08-xx 13:31:30.049 DEBUG 9208 : ==> Preparing: SELECT SUM(end_vt) - SUM(start_vt) FROM s ...

  2. 图书管理系统---基于form组件和modelform改造添加和编辑

    添加 基于form组件改造 步骤1 1.为了区分自己写的form类和视图逻辑,所以工作中需要区分开来,那么就可以在应用下创建一个叫utils的文件夹,专门存放我们写的form类,py文件名随便起 2. ...

  3. django学习第十一天---django操作cookie和session

    Cookie cookie解析 会话 http协议是无状态的,无连接的 导致每次客户端访问服务端需要登录成功之后才能访问的页面,都需要用户再重新登录一遍,用户体验极差. 客户端想了个办法,cookie ...

  4. celery中异步延迟执行任务apply_anysc的用法

    描述 首先说下异步任务执行delay()和apply_anysc()两者区别,其实两者都是执行异步任务的方法,delay是apply_anysc的简写.所以delay中传递的参数会比apply_any ...

  5. Calculate Similarity调研

    Calculate Similarity - the most relevant Metrics in a Nutshell --调研学习相似度定义与计算 Zhang Zhibin 张芷彬 Many ...

  6. spark读取和处理zip、gzip、excel、等各种文件最全的技巧总结

    一.当后缀名为zip.gzip,spark可以自动处理和读取 1.spark非常智能,如果一批压缩的zip和gzip文件,并且里面为一堆text文件时,可以用如下方式读取或者获取读取后的schema ...

  7. 专访容智信息柴亚团:最低调的公司如何炼成最易用的RPA?

    专访容智信息柴亚团:最低调的公司如何炼成最易用的RPA? 专访容智信息柴亚团:终极愿景是助力天下企业成为数字化孪生组织 文/王吉伟 6月,容智信息(容智)正式发布了全新的移动端RPA产品iBot Mo ...

  8. elementPlus使用el-icon

    按着文档来撒 yarn add @element-plus/icons-vue main.ts import * as ElementIcons from '@element-plus/icons-v ...

  9. pandas plot函数:数据可视化的快捷通道

    一般来说,我们先用pandas分析数据,然后用matplotlib之类的可视化库来显示分析结果.而pandas库中有一个强大的工具--plot函数,可以使数据可视化变得简单而高效. 1. plot 函 ...

  10. vue 打包 可以加 --watch 持续打包 - 开发本地应用程序 - 套壳模式开发

    vue 打包 可以加 --watch 持续打包 - 开发本地应用程序 - 套壳模式开发 "watch": "vue-cli-service build --watch - ...