单调队列:就是滑动窗口,可以求出定长 RMQ,时间复杂度线性。

优化 DP

首先把dp方程写成这个样子:

或者其他运算f[i]=max(或者其他运算){f[j]+calc(i,j)}<script type="math/tex;mode=inline" id="MathJax-Element-3">f[i] = max(\text{或者其他运算})\{f[j]+calc(i,j)\}</script>f[i] = max(\text{或者其他运算})\{f[j]+calc(i,j)\}

注意 calc 的计算要能只和 j 有关。

同时 j 满足一个定长的范围,也就是说转移是从一个定长区间来的。

P3572 [POI2014] PTA-Little Bird,P1725 琪露诺:完全的模版。

在此不妨以P3957 [NOIP2017 普及组] 跳房子为例。

首先意识到本题答案满足单调性,灵活性的定义也符合人类想象(越灵活,可能得到的答案就越大),于是首先二分 k 的值,然后考虑 k 确定时的做法。

根据题目灵活性的定义,实际上能跳的范围就是 [max(d−g,1),d+g]<script type="math/tex;mode=inline" id="MathJax-Element-1">[\max(d-g,1),d+g]</script>[\max(d-g,1),d+g] ,满足定长区间, f[i]=f[j]+s[i]<script type="math/tex;mode=inline" id="MathJax-Element-2">f[i]=f[j]+s[i]</script>f[i]=f[j]+s[i] ,那么使用单调队列。

结合一下我的代码:

#include <bits/stdc++.h>
#define int long long
#define U (l+r)/2
#define F(i,a,b) for(int i=(a);i<=(b);i++)
using namespace std;
const int N=500005,M=(N<<1),inf=1e18;
int n,d,k,x[N],s[N],f[N],q[M];
int ck(int g){
int h=1,t=0,l=0;
fill(f+1,f+n+1,-inf);
F(i,1,n){
while(h<=t&&x[i]-x[q[h]]>d+g) h++;
while(l<i&&x[i]-x[l]>=d-g){
while(h<=t&&f[l]>=f[q[t]])t--;
q[++t] = l++;
}if(h<=t)f[i]=f[q[h]]+s[i];
if(f[i]>=k) return 1;
}return 0;
}
signed main(){
ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>n>>d>>k;F(i,1,n) cin>>x[i]>>s[i];
int l=0,r=1e9,ans=-1;while(l<=r)
ck(U)?ans=U,r=U-1:l=U+1;
cout<<ans; return 0;
}

首先,对超出范围的,进行删除,然后对符合条件的,进行加入,最后直接转移答案。

CF372C Watching Fireworks is Fun

这题有点启示作用,当 k 满足 j−x<k<j<script type="math/tex;mode=inline" id="MathJax-Element-4">j-xj-x<k<j 的时候显然直接单调队列。然而这道题会推出来一个这样的式子: j−x<k<j+x<script type="math/tex;mode=inline" id="MathJax-Element-9">j-xj-x<k<j+x 。做法是拆成两段,一段满足 j−x<k≤j<script type="math/tex;mode=inline" id="MathJax-Element-5">j-xj-x<k\le j ,另一段是 j≤k<j+x<script type="math/tex;mode=inline" id="MathJax-Element-6">j\le kj\le k<j+x ,可以两次单调队列秒掉。

具体的,我们把状态设为 f[i][j]<script type="math/tex;mode=inline" id="MathJax-Element-8">f[i][j]</script>f[i][j] ,表示放第 i 个烟花的时候在 j 点能得到的最大值, f[i][j]=max{f[i−1][k]+b[i]−|a[i]−j|}<script type="math/tex;mode=inline" id="MathJax-Element-7">f[i][j]=\max\{f[i-1][k]+b[i]-\left| a[i]-j \right|\}</script>f[i][j]=\max\{f[i-1][k]+b[i]-\left| a[i]-j \right|\} ,同时 k 能走到 j 点(即定长区间的最值)。

P2569 [SCOI2010] 股票交易:

转移多一点的时候只需要去先写朴素的方程,然后优化。

注意,尽量使用数组代替deque,因为这个东西很慢(虽然有些题实测差距不大)。

算法学习笔记【8】| 单调队列优化DP的更多相关文章

  1. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  2. bzoj1499: [NOI2005]瑰丽华尔兹&&codevs1748 单调队列优化dp

    这道题 网上题解还是很多很好的 强烈推荐黄学长 码风真的好看 神犇传送门 学习学习 算是道单调队列优化dp的裸题吧 #include<cstdio> #include<cstring ...

  3. 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易

    DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...

  4. 算法笔记--单调队列优化dp

    单调队列:队列中元素单调递增或递减,可以用双端队列实现(deque),队列的前面和后面都可以入队出队. 单调队列优化dp: 问题引入: dp[i] = min( a[j] ) ,i-m < j ...

  5. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  6. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  7. 2018.09.10 bzoj1499: [NOI2005]瑰丽华尔兹(单调队列优化dp)

    传送门 单调队列优化dp好题. 这题其实很简单. 我们很容易想到一个O(T∗n∗m)" role="presentation" style="position: ...

  8. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  9. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  10. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

随机推荐

  1. 谁说docker-compose不能水平扩展容器、服务多实例?

    ❝ 虽说我已经从docker-compose走上了docker swarm的邪门歪道,目前被迫走在k8s这条康庄大道, 但是我还是喜欢docker-compose简洁有效的部署方式. ❞ 曾其何时 d ...

  2. 获取Linux mac地址(centos与ubuntu通用)

    ip -a addr| grep link/ether | awk '{print $2}'| head -n 1 获取Linux mac地址(centos与ubuntu通用)

  3. windbg 学习

    常用的 windbg 命令 .ecxr 用来切换到异常发生时的上下文,主要用在分析静态 dump 文件的时候.当我们使用 .reload 命令去强制加载库的 pdb 文件后,需要执行 .ecxr 命令 ...

  4. 【LeetCode动态规划#01】动规入门:求斐波那契数 + 爬楼梯 + 最小代价爬楼梯(熟悉解题方法论)

    斐波那契数 力扣题目链接(opens new window) 斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 .该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就 ...

  5. 记一次 .NET某设备监控自动化系统 CPU爆高分析

    一:背景 1. 讲故事 先说一下题外话,一个监控别人系统运行状态的程序,结果自己出问题了,有时候想一想还是挺讽刺的,哈哈,开个玩笑,我们回到正题,前些天有位朋友找到我,说他们的系统会偶发性CPU爆高, ...

  6. 使用 ASP.NET Core MVC 创建 Web API 系列文章目录

    使用 ASP.NET Core MVC 创建 Web API(一) 使用 ASP.NET Core MVC 创建 Web API(二) 使用 ASP.NET Core MVC 创建 Web API(三 ...

  7. 图片动态操作,利用SeekBar控制属性示例,适配屏幕解决方案

    需求为,让图片适配屏幕大小,并且可以用一个滑块来控制图片的旋转,用一个滑块来控制图片大小,核心语法思路,控制图片的大小, 核心语法为:mImageView.setLayoutParams(new Li ...

  8. 摆脱鼠标系列 - 用git命令提交代码

    需求 最近开始改变用鼠标的习惯,之前一直是用鼠标点击vscode,点击提交 现在不用鼠标,改用命令行,命令很简单,主要是习惯的改变 实现 vscode环境 ctrl + ` 快捷键打开命令行 git ...

  9. .NET集成DeveloperSharp实现强大的AOP

    (适用于.NET/.NET Core/.NET Framework)[目录]0.前言1.第一个AOP程序2.Aspect横切面编程3.一个横切面程序拦截多个主程序4.多个横切面程序拦截一个主程序5.优 ...

  10. 【算法】C和Python实现快速排序-三数中值划分选择主元(非随机)

    一.快排基础 1.1 快排的流程 将数组A进行快速排序的基本步骤-quick_sort(A): 递归基础情况:如果A中的元素个数是1或0,则返回. 选取主元:取A中的任意一个元素v,作为主元(pivo ...