Nearest cluster-based intrusion detection through convolutional neural networks 笔记
Nearest cluster-based intrusion detection through convolutional neural networks
技术要点
So, the primary innovation of this study is the definition of a new deep learning pipeline, that couples the characteristics of a target network flow to the characteristics of the neighbour of the flow under consideration, which belongs to the same class, as well as the characteristics of the neighbour that belongs to the opposite class of the target flow.
Another innovation is that this joint information – the characteristics of the network flows coupled to the characteristics of the neighbour flows – is represented as multiple rows of image-like 2D pixel grids, instead of being concatenated into 1D vectors.
However, to the best of our knowledge, none of the existing state-of-the-art algorithms propose a 2D representation of the network flows, which encodes the neighbouring informa- tion in the imaging step. On the other hand, this is one of the innovative contributions of this study,
Similarly to the above-mentioned studies, we also adopt clus- tering to speed up the computation. However, we pursue this speeding-up with respect to the imaging stage, while the related works listed above mainly use clustering to accelerate the deep learning stage, by reducing the volume of data processed to train the networks. We also perform experiments proving that the efficiency in our methodology is gained by preserving the accuracy of the final CNNs trained with the produced images.
因此,本研究的主要创新之处在于定义了一种新的深度学习管道,它将目标网络流的特征与所考虑的同类别流的邻居的特征相结合,以及属于目标流相反类的邻居的特性。
另一个创新是,这种联合信息——网络流的特征与相邻流的特征耦合——被表示为多行类似图像的2D像素网格,而不是被连接成一维向量。
然而,据我们所知,现有的最先进的算法都没有提出网络流的二维表示,在成像步骤中对邻近的信息进行编码。另一方面,这是本研究的创新贡献之一,
与上述研究相似,我们也采用聚类来加快计算速度。然而,我们在成像阶段追求这种加速,而上面列出的相关工作主要使用聚类来加速深度学习阶段,通过减少处理的数据量来训练网络。我们还进行了实验,证明了我们的方法的效率是通过保持最后用生成的图像训练的cnn的准确性来获得的。
关键文献
- Z. Li, Z. Qin, K. Huang, X. Yang, S. Ye, Intrusion detection using convolutional neural networks for representation learning, in: ICONIP, Springer International Publishing, 2017, pp. 858–866.
- T. Kim, S.C. Suh, H. Kim, J. Kim, J. Kim, An encoding technique for cnn-based network anomaly detection, in: 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018, pp. 2960–2965.
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,in: 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE Computer Society, 2016, pp. 770–778.
- C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D.Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),IEEE, 2015, pp. 1–9.
- K. Millar, A. Cheng, H.G. Chew, C.-C. Lim, Using convolutional neural networks for classifying malicious network traffic, Deep Learn. Appl. Cyber Secur. (2019) 103–126.
Nearest cluster-based intrusion detection through convolutional neural networks 笔记的更多相关文章
- Convolutional Neural Networks 笔记
1 Foundations of Convolutional Neural Networks 1.1 cv问题 图像分类.目标检测.风格转换.但是高像素的图片会带来许多许多的特征. 1.2 边缘检测( ...
- Bag of Tricks for Image Classification with Convolutional Neural Networks笔记
以下内容摘自<Bag of Tricks for Image Classification with Convolutional Neural Networks>. 1 高效训练 1.1 ...
- tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...
- 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记
论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
- 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks
This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- Convolutional Neural Networks: Step by Step
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
随机推荐
- 非 root 用户手动编译安装 GCC
我们知道,关于 GCC 在 CentOS 下通过 yum 安装默认版本号,CentOS 5 是 4.1.2:CentOS 6 是 4.4.7:CentOS 7 是 4.8.3.很多时候在编译安装软件都 ...
- 驱动开发:内核ShellCode线程注入
还记得<驱动开发:内核LoadLibrary实现DLL注入>中所使用的注入技术吗,我们通过RtlCreateUserThread函数调用实现了注入DLL到应用层并执行,本章将继续探索一个简 ...
- 从0搭建Vue3组件库(十):如何搭建一个 Cli 脚手架
本篇文章将实现一个名为create-easyest脚手架的开发,只需一个命令npm init easyest就可以将整个组件库开发框架拉到本地. 创建 Cli 包 首先,我们在 packages 目录 ...
- js如何操作video标签
一.简介 在做web ui自动化时,遇到操作视频的时候有时比较让人头疼,定位时会发现只有一个<video>标签,用selenium来实现的话比较麻烦,使用js后我们只需定位到video标签 ...
- java调用WebService(未完成)记录篇
背景: 因工作需要和一个Sap相关系统以WebService的方式进行接口联调,之前仅听过这种技术,但并没有实操过,所以将本次开发相关的踩坑进行记录 通过一个实例来认识webservice 服务端 首 ...
- 曲线艺术编程 coding curves 第十四章 其它曲线(Miscellaneous Curves)
第十四章 其它曲线(Miscellaneous Curves) 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ ...
- .NET EF查询需要注意的点
记录下在公司中混乱使用跟踪和非跟踪查询的坑. var blog = context.Blogs.Single(b => b.BlogId == 1); // 查询时放回一条 如果存在多条引发异常 ...
- Parallel 与 ConcurrentBag<T> 这对儿黄金搭档
〇.前言 日常开发中经常会遇到数据统计,特别是关于报表的项目.数据处理的效率和准确度当然是首要关注点. 本文主要介绍,如何通过 Parallel 来并行处理数据,并组合 ConcurrentBag&l ...
- 用字符串表达式执行引擎消除掉if else if
背景 最近我搞了个微信机器人,@机器人 xxx 这样来发送命令 能拿到的信息有,消息内容,消息发送人,消息所在的群id等 需要根据消息内容或者消息发送群id等不同的条件组合来决定走哪个处理逻辑. 简单 ...
- NOIP模拟测试A3
A. 谜之阶乘 题目是让我们把 \(n\) 分解成两个阶乘的商,本来想推个式子什么的,结果发现推不出来. 我们知道,阶乘的增长速率非常的快啊!那么这个 \(b - a\) 的值肯定不会太大,我们可以暴 ...