Nearest cluster-based intrusion detection through convolutional neural networks 笔记
Nearest cluster-based intrusion detection through convolutional neural networks
技术要点
So, the primary innovation of this study is the definition of a new deep learning pipeline, that couples the characteristics of a target network flow to the characteristics of the neighbour of the flow under consideration, which belongs to the same class, as well as the characteristics of the neighbour that belongs to the opposite class of the target flow.
Another innovation is that this joint information – the characteristics of the network flows coupled to the characteristics of the neighbour flows – is represented as multiple rows of image-like 2D pixel grids, instead of being concatenated into 1D vectors.
However, to the best of our knowledge, none of the existing state-of-the-art algorithms propose a 2D representation of the network flows, which encodes the neighbouring informa- tion in the imaging step. On the other hand, this is one of the innovative contributions of this study,
Similarly to the above-mentioned studies, we also adopt clus- tering to speed up the computation. However, we pursue this speeding-up with respect to the imaging stage, while the related works listed above mainly use clustering to accelerate the deep learning stage, by reducing the volume of data processed to train the networks. We also perform experiments proving that the efficiency in our methodology is gained by preserving the accuracy of the final CNNs trained with the produced images.
因此,本研究的主要创新之处在于定义了一种新的深度学习管道,它将目标网络流的特征与所考虑的同类别流的邻居的特征相结合,以及属于目标流相反类的邻居的特性。
另一个创新是,这种联合信息——网络流的特征与相邻流的特征耦合——被表示为多行类似图像的2D像素网格,而不是被连接成一维向量。
然而,据我们所知,现有的最先进的算法都没有提出网络流的二维表示,在成像步骤中对邻近的信息进行编码。另一方面,这是本研究的创新贡献之一,
与上述研究相似,我们也采用聚类来加快计算速度。然而,我们在成像阶段追求这种加速,而上面列出的相关工作主要使用聚类来加速深度学习阶段,通过减少处理的数据量来训练网络。我们还进行了实验,证明了我们的方法的效率是通过保持最后用生成的图像训练的cnn的准确性来获得的。
关键文献
- Z. Li, Z. Qin, K. Huang, X. Yang, S. Ye, Intrusion detection using convolutional neural networks for representation learning, in: ICONIP, Springer International Publishing, 2017, pp. 858–866.
- T. Kim, S.C. Suh, H. Kim, J. Kim, J. Kim, An encoding technique for cnn-based network anomaly detection, in: 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018, pp. 2960–2965.
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,in: 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE Computer Society, 2016, pp. 770–778.
- C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D.Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),IEEE, 2015, pp. 1–9.
- K. Millar, A. Cheng, H.G. Chew, C.-C. Lim, Using convolutional neural networks for classifying malicious network traffic, Deep Learn. Appl. Cyber Secur. (2019) 103–126.
Nearest cluster-based intrusion detection through convolutional neural networks 笔记的更多相关文章
- Convolutional Neural Networks 笔记
1 Foundations of Convolutional Neural Networks 1.1 cv问题 图像分类.目标检测.风格转换.但是高像素的图片会带来许多许多的特征. 1.2 边缘检测( ...
- Bag of Tricks for Image Classification with Convolutional Neural Networks笔记
以下内容摘自<Bag of Tricks for Image Classification with Convolutional Neural Networks>. 1 高效训练 1.1 ...
- tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...
- 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记
论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
- 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks
This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- Convolutional Neural Networks: Step by Step
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
随机推荐
- 【AGC】Connect API报错submit failed的相关问题
[关键字] AGC.Connect API.Publishing API [问题描述] 开发者反馈在使用AGC的Connect API提交发布时,报出了[cds]submit failed, add ...
- 从输入URI到浏览器渲染中间都经历了什么
这篇文章总共分为两个部分,第一部分我会把从输入url到浏览器渲染的整个流程给大致说一下.第二部分我就会一一介绍各个部分的详细作用. 一.从输入url到浏览器渲染的整个流程 1.DNS域名解析 2. ...
- R语言中的跨平台支持:如何在Windows、MacOS和Linux上使用R语言进行数据分析和可视化
目录 当今数据科学领域,R语言已经成为了数据分析和可视化的流行工具.R语言具有强大的功能和灵活性,使得它可以在各种不同的平台上运行,包括Windows.MacOS和Linux.因此,本文将介绍R语言中 ...
- TCP/IP协议发明人G-Cerf
如果你是一个IT人,你可以不知道Vinton G. Cerf博士,但你不可能不知道TCP/IP; 如果你不是一个IT人,你可以不知道TCP/IP,但你不可能不知道互联网; 如果从1973年起,Vint ...
- CSS border(边框)
CSS 边框属性 CSS边框属性允许你指定一个元素边框的样式和颜色. 可以为上下左右每个框 定制不同的样式和颜色. 边框样式 边框样式属性指定要显示什么样的边界. border-style属性用来定义 ...
- Anchored Neighborhood Regression【阅读笔记】GR全局回归
论文信息 [Anchored Neighborhood Regression for Fast Example-Based uper Resolution]-TIMOFTER, 2013, IEEE ...
- Swift函数调用方式浅析
函数的调用机制 函数的调用机制是在函数调用时通过那种路径走到最终调用函数地址的机制. 在编程语言中,函数的调用机制有三种 1.静态调用:编译期就确定了函数内存地址,执行效率最高,还可以使用编译器优 ...
- linux内核笔记(二)微机计算机组成结构
一个系统有四个基本组成部分: 输入部分:接收系统的数据(键盘等) 处理中心:处理(cpu) 能源部分:处理需要的硬件资源(内存等) 输出部分:显示给用户(显示器等) 计算机系统分为: 计算机系统分为软 ...
- MariaDB start 报错:mysql-bin.index' not found (Errcode: 2) (Errcode: 13)
问题是修改配置log-bin=/data/mysql/binlog/mysql-bin后出现的. 报错:Errcode: 2 mkdir -p /data/mysql/binlog ## 和正常的DB ...
- sqlmap指定参数注入
在参数前面加星号