Matplotlib 库是一个用于数据可视化和绘图的 Python 库。
它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。

使用 Matplotlib 的过程中,遇到的难点并不在于绘制各类的图形,因为每种图形都有其对应的API。
难点在于对绘制的图形进行调整,这些调整包括:

  1. 图形的大小
  2. 多个图形的组合
  3. 坐标轴的方向,刻度的精度
  4. 图形的颜色和字体

等等。

进行这些调整需要对 Matplotlib 的绘图机制和其中的主要元素有个整体的了解。
本篇首先整体介绍下Matplotlib绘制的图形中的主要元素,然后重点介绍下其中第一个重要的元素--画布

1. 主要元素

下面绘制一个简单的图形来演示Matplotlib绘图时的主要元素。

import numpy as np

import matplotlib
import matplotlib.pyplot as plt %matplotlib inline #绘制一个展示主要元素的图
x = np.array(range(0, 8))
y1 = np.sin(x) fig = plt.figure()
fig.set_size_inches(10,4)
fig.set_facecolor('lightgreen')
fig.suptitle("整个图形的总标题")
fig.subplots_adjust(wspace=0.3) ax1 = fig.add_subplot(121)
ax1.plot(x, y1)
ax1.set_title("图1 标题")
ax1.set_xlabel("图1--x轴")
ax1.set_ylabel("图1--y轴") ax2 = fig.add_subplot(122)
y2 = np.cos(x)
ax2.plot(x, y1)
ax2.plot(x, y2)
ax2.set_title("图2 标题")
ax2.set_xlabel("图2--x轴")
ax2.set_ylabel("图2--y轴")
ax2.legend(labels=["sin", "cos"]) fig.show()


上例中,我们绘制了2个子图。
主要的元素包括,图形的大小,图形的标题(主标题和子图标题),坐标轴(轴标签和刻度),图例,子图中曲线(这里可以根据情况换成其他图形,比如柱状图,散点图等等)。

上面的示例代码不用太关心,这里只是为了显示Matplotlib的主要元素。
后续的文章会介绍各个主要元素的常用属性,最终的目的是能够灵活的绘制出符合显示要求的图形,而不仅仅只是绘制出图形。

本篇介绍的主要元素是画布

2. 画布

画布是其他所有的元素的载体,可以说是最重要,也是最容易被忽视的元素。
绘制图形之前,第一件事就是创建画布

2.1. 主要属性

创建画布之后,一般主要用到的属性是调整画布的大小颜色
Matplotlib画布的大小通过设置英寸和dpi来实现,dpi表示一英寸有多少像素。

2.1.1. 画布大小

比如下面的示例:

fig = plt.figure(figsize=[6, 3], dpi=100)
fig.suptitle("标题")
x = np.array(range(0, 8))
y = np.sin(x)
plt.plot(x, y)

修改dpi=200,图形明显变大和清晰。

fig = plt.figure(figsize=[6, 3], dpi=200)

2.1.2. 画布颜色

除了大小,设置画布颜色也是比较常用的。
颜色主要有两种,背景色和边框颜色(默认的边框宽度是0,所以要设置边框颜色时,别忘了设置边框的宽度)。
比如:下面示例设置了背景色浅绿色,边框宽度10,颜色红色

fig = plt.figure(facecolor="lightgreen",
edgecolor="red",
linewidth=10)
fig.suptitle("标题")
x = np.array(range(0, 8))
y = np.sin(x)
plt.plot(x, y)

2.2. 主要方法

除了属性,画布还有几个方法也是经常使用的。

2.2.1. 设置标题

上面的示例中已经包含了,也就是 suptitle() 方法。

2.2.2. 添加子图

添加子图用 add_subplot() 方法,这个方法的参数一般是三个数组 xyz
x表示有几行,y表示有几列,z表示是第一个子图。
比如:一行两列2个图

fig = plt.figure()

fig.add_subplot(121)
fig.add_subplot(122)

比如:2行一列2个图:

fig = plt.figure()

fig.add_subplot(211)
fig.add_subplot(212)

比如:2行2列4个图:

fig = plt.figure()

fig.add_subplot(221)
fig.add_subplot(222)
fig.add_subplot(223)
fig.add_subplot(224)

2.2.3. 保存图像

画布还有个重要的功能就是把显示的图形保存下来,即 savefig() 方法。
可以把绘制的图形保存到磁盘,用于分享或者制作报告。

fig.savefig("d:/share/image.png")

3. 总结回顾

画布让我们可以整体上设置图形的质量和排版,分析和作图过程中虽然不用过多考虑它,但是最终如果要出报告和文档时,画布的设置就会变得重要。

画布是绘图的第一步,接下来这个系列会逐步介绍 Matplotlib的其他主要元素。

【matplotlib基础】--画布的更多相关文章

  1. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  2. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  3. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  4. HTML5 Canvas(画布)实战编程初级篇:基本介绍和基础画布元素

    欢迎大家阅读HTML5 Canvas(画布)实战编程初级篇系列,在这个系列中,我们将介绍最简单的HTML5画布编程.包括: 画布元素 绘制直线 绘制曲线 绘制路径 绘制图形 绘制颜色,渐变和图案 绘制 ...

  5. Matplotlib基础图形之散点图

    Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...

  6. matplotlib基础

    Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...

  7. 模块简介与matplotlib基础

    模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...

  8. [笔记]SciPy、Matplotlib基础操作

    NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...

  9. 第二周 数据分析之展示 Matplotlib基础绘图函数实例

    Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...

  10. matplotlib基础知识全面解析

    图像基本知识: 通常情况下,我们可以将一副Matplotlib图像分成三层结构: 1.第一层是底层的容器层,主要包括Canvas.Figure.Axes: 2.第二层是辅助显示层,主要包括Axis.S ...

随机推荐

  1. .NET 通过源码深究依赖注入原理

    依赖注入 (DI) 是.NET中一个非常重要的软件设计模式,它可以帮助我们更好地管理和组织组件,提高代码的可读性,扩展性和可测试性.在日常工作中,我们一定遇见过这些问题或者疑惑. Singleton服 ...

  2. 7-2 Broken Pad (20 分)

    1.题目描述: The party began, the greasy uncle was playing cards, the fat otaku was eating, and the littl ...

  3. yolotv5和resnet152模型预测

    我已经训练完成了yolov5检测和resnet152分类的模型,下面开始对一张图片进行检测分类. 首先用yolo算法对猫和狗进行检测,然后将检测到的目标进行裁剪,然后用resnet152对裁剪的图片进 ...

  4. 2022 i春秋冬季赛

    Misc nan's analysis 下载附件之后,打开是一道流量数据包. 开始分析流量,首先看到的是FTP流量 追踪tcp,发现ftp账号密码 先记录一下,接下来发现一个zip文件,选择原始数据, ...

  5. ModelBox实战开发:RK3568实现摄像头虚拟背景

    摘要:本文将使用ModelBox端云协同AI开发套件(RK3568)实现摄像头虚拟背景AI应用的开发. 本文分享自华为云社区<ModelBox开发案例 - RK3568实现摄像头虚拟背景[玩转华 ...

  6. SPSS统计教程:卡方检验

    本文简要的介绍了卡方分布.卡方概率密度函数和卡方检验,并通过SPSS实现了一个卡方检验例子,不仅对结果进行了解释,而且还给出了卡方.自由度和渐近显著性的计算过程.本文用到的数据"2.2.sa ...

  7. 逍遥自在学C语言 | 多级指针探秘

    前言 多级指针在C语言中是一种特殊的指针类型,它可以指向其他指针的指针. 通过多级指针,我们可以间接地访问或修改存储在内存中的数据. 在本文中,我们将讨论多级指针的概念.使用方法.使用场景以及常见错误 ...

  8. Shodan使用指南

    Shodan是用于搜索连接到互联网的设备的工具.与搜索引擎可以帮助你找到网站不同,Shodan可以帮助你找到有关台式机,服务器,IoT设备等的信息.此信息包括元数据,例如在每个设备上运行的软件. Sh ...

  9. 如何在.net6webapi中记录每次接口请求的日志

    为什么在软件设计中一定要有日志系统? 在软件设计中日志模块是必不可少的一部分,可以帮助开发人员更好的了解程序的运行情况,提高软件的可靠性,安全性和性能,日志通常能帮我们解决如下问题: 调试和故障排查: ...

  10. Taurus .Net Core 微服务开源框架:Admin 插件【4-3】 - 配置管理-Mvc【Plugin-MicroService 微服务】

    前言: 继上篇:Taurus .Net Core 微服务开源框架:Admin 插件[4-2] - 配置管理-Mvc[含请求日志打印] 本篇继续介绍下一个内容: 1.系统配置节点:Mvc - Plugi ...