题解 SP13015
题目描述:
给定初始序列 \(A\),然后对原序列有以下操作:
- 操作 \(1\):
0 l r v将区间 \([l,r]\) 全赋值为 \(v\)。 - 操作 \(2\):
1 l r查询区间 \([l,r]\) 的质数个数。
注意:多组测试和特殊的输出。
题目分析:
就是一道板子题,首先我们先用欧拉筛筛出值域 \([2,10^6]\) 内的素数并开桶打标记(实际上一个欧拉筛就行了)。
此时,线段树维护的是当前区间内质数的个数,我们可以将操作 \(1\) 变成如下操作:
- 若 \(v\) 属于质数,则将区间 \([l,r]\) 内的数全赋值成 \(1\)。
- 若 \(v\) 不属于质数,则将区间 \([l,r]\) 内的数全赋值成 \(0\)。
那么,操作 \(2\) 此时显然就变成了一个区间求和。
时间复杂度,\(O(n\lg n)\)。
代码实现:
#include <bits/stdc++.h>
#define dbg(x) cerr<<#x<<": "<<x<<endl;
using namespace std;
#define MAX_SIZE (int)2e6
#define MAX_RANGE (int)1.1e6
bool nf[MAX_RANGE];
int primes[MAX_RANGE];
inline void primeshai(int n){
for(register int i=2;i<=n;i++){
if(!nf[i])
primes[++primes[0]] = i;
for(register int j=1;j<=primes[0]&&primes[j]*i<=n;j++){
nf[primes[j]*i] = 1;
if(i%primes[j]==0)
break;
}
}
}
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*f;
}
struct SegmentTree{
int sum;
int lazy;
int l,r;
int len;
};
SegmentTree seg[MAX_SIZE<<2];
int a[MAX_SIZE];
void build(int p,int l,int r)
{
seg[p].l = l;
seg[p].r = r;
seg[p].lazy = -1;
seg[p].len = r-l+1;
if(l==r){
seg[p].sum = !nf[a[l]];
return;
}
int mid = (l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
seg[p].sum = seg[p<<1].sum + seg[p<<1|1].sum;
}
inline void spread(int p){
if(seg[p].lazy!=-1){
seg[p<<1].sum = seg[p].lazy*seg[p<<1].len;
seg[p<<1|1].sum = seg[p].lazy*seg[p<<1|1].len;
seg[p<<1].lazy = seg[p].lazy;
seg[p<<1|1].lazy = seg[p].lazy;
seg[p].lazy = -1;
}
}
inline void modify(int p,int l,int r,int val){
if(l<=seg[p].l&&r>=seg[p].r){
seg[p].sum = val * seg[p].len;
seg[p].lazy = val;
return;
}
if(seg[p].lazy>=0)
spread(p);
int mid = (seg[p].l+seg[p].r)>>1;
if(l<=mid)
modify(p<<1,l,r,val);
if(r>mid)
modify(p<<1|1,l,r,val);
seg[p].sum = seg[p<<1].sum + seg[p<<1|1].sum;
}
inline int query(int p,int l,int r){
if(l<=seg[p].l&&r>=seg[p].r)
return seg[p].sum;
if(seg[p].lazy>=0)
spread(p);
int val = 0;
int mid = (seg[p].l+seg[p].r)>>1;
if(l<=mid)
val += query(p<<1,l,r);
if(r>mid)
val += query(p<<1|1,l,r);
return val;
}
int main(){
ios::sync_with_stdio(false);
cout.tie(0);
#ifdef LOCAL
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
double c1 = clock();
#endif
//============================================
primeshai(1e6);
int T;
T = read();
for(int x=1;x<=T;x++){
cout<<"Case "<<x<<':'<<endl;
int n = read();
int q = read();
for(int i=1;i<=n;i++)
a[i] = read();
build(1,1,n);
while(q--){
switch(read()){
case 0:{
int l = read();
int r = read();
int y = read();
modify(1,l,r,!nf[y]);
break;
}
case 1:{
int l = read();
int r = read();
cout<<query(1,l,r)<<endl;
break;
}
}
}
}
//============================================
#ifdef LOCAL
double c2 = clock();
cerr<<"Used Time: "<<c2-c1<<"ms"<<endl;
if(c2-c1>1000)
cerr<<"Warning!! Time Limit Exceeded!!"<<endl;
fclose(stdin);
fclose(stdout);
#endif
return 0;
}
题解 SP13015的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
- JSOI2016R3 瞎BB题解
题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...
随机推荐
- Redis 集群偶数节点跨地域部署之高可用测试
笔者目前所在公司存在多套 Redis 集群: A 集群 主 + 从 共 60 个分片,部署在 3 + 3 台物理机上,每台机器各承载 10 个端口 主库 30 个端口在广州,从库 30 个端口在中山 ...
- 2021-11-17 WPF初识
StackPanel容器:默认竖直排列,Orientation="Horizontal"横向排列,超过就不会显示 wrapPanel:超过会自动换行 设置样式: <Windo ...
- linux下的venv使用
首先安装该模块: sudo apt-get install python3-venv 之后创建用于存储工程的文件夹 mkdir [filename] 创建环境: python3 -m venv ven ...
- cesium 绑定dom弹窗(跟随模型)
https://blog.csdn.net/qq_36266612/article/details/109648367?utm_term=cesium%E6%80%8E%E4%B9%88%E6%B7% ...
- TensorRT 模型加密杂谈
在大多数项目交付场景中,经常需要对部署模型进行加密.模型加密一方面可以防止泄密,一方面可以便于模型跟踪管理,防止混淆. 由于博主使用的部署模型多为TensorRT格式,这里以TensorRT模型为例, ...
- 表格JS实现在线Excel的附件上传与下载
摘要:本文由葡萄城技术团队于博客园原创并首发.转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 前言 在本地使用Excel时,经常会有需要在Excel中添加一 ...
- DateTime 相关的操作汇总【C# 基础】
〇.前言 在日常开发中,日期值当然是不可或缺的,能够清晰的在脑海中梳理出最快捷的实现也非常重要,那么今天就来汇总一下. 一.C# 中的本机时间以及格式化 如何取当前(本机)时间?很简单,一句话解决: ...
- 14.4K Star,一款外观漂亮、运行快速、动画细腻的开源免费UI组件库
之前给大家推荐了很多后台模版,有读者希望推荐一些跟通用的好看组件,毕竟出了后台还有很多其他场景嘛.所以,今天继续给大家推荐一个广受好评的UI组件库:NextUI 主要特性 NextUI的主要目标是简化 ...
- .NET周刊【8月第4期 2023-08-27】
国内文章 AgileConfig-1.7.0 发布,支持 SSO https://www.cnblogs.com/kklldog/p/agileconfig-170.html AgileConfig ...
- Codeforces 1257D - Yet Another Monster Killing Problem
题意: 有\(n\)个怪物,每个怪物有攻击力\(a_i\)点:有\(m\)个英雄,每个英雄有攻击力\(p_i\)点,耐力\(s_{i}\)点. 怪物需要被依次杀死(按输入顺序). 每一天可以挑选一个英 ...