相关文章:

【一】gym环境安装以及安装遇到的错误解决

【二】gym初次入门一学就会-简明教程

【三】gym简单画图

【四】gym搭建自己的环境,全网最详细版本,3分钟你就学会了!

【五】gym搭建自己的环境____详细定义自己myenv.py文件

【六】gym搭建自己环境升级版设计,动态障碍------强化学习


gym简明教程

创建CartPole-v0的环境.

import gym
env = gym.make('CartPole-v0')
env.reset()
for i in range(1000):
env.render()
env.step(env.action_space.sample()) # take a random action
env.close()

代码含义:

  • reset(self):重置环境的状态,返回观察。
  • step(self, action):推进一个时间步长,返回observation, reward, done, info。
  • render(self, mode=‘human’, close=False):重绘环境的一帧。默认模式一般比较友好,如弹出一个窗口。
  • close(self):关闭环境,并清除内存。

注释:导入gym库,第2行创建CartPole-v0环境,并在第3行重置环境状态。在for循环中进行1000个时间步长(timestep)的控制,第5行刷新每个时间步长环境画面,第6行对当前环境状态采取一个随机动作(0或1),最后第7行循环结束后关闭仿真环境。

同时本地会渲染出一个窗口进行模拟如下图:

关于Space的说明

在上面的代码中, 我们可以看到我们每一次的action都是随机进行取值的. 事实上, 每一个环境都有action_space和observation_space.(Every environment comes with an action_space and an observation_space)

以CartPole-v0来作为例子.

首先我们来看action_spaces, 这个代表可以采取的action的种类, 在CartPole-v0的例子中, 可以采取的action的种类只有两种. 我们看一下下面的示例.

import gym
env = gym.make('CartPole-v0')
print(env.action_space)
#> Discrete(2)
print(env.observation_space)
#> Box(4,)
  • action_space 是一个离散Discrete类型,从discrete.py源码可知,范围是一个{0,1,…,n-1} 长度为 n 的非负整数集合,在CartPole-v0例子中,动作空间表示为{0,1}。

对于observation_space. 则查看这个space的shape四个边界的上界和下界(能取到的最大值和最小值)

print(env.observation_space.high)
print(env.observation_space.low)
[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]
[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]

observation_space 是一个Box类型,从box.py源码可知,表示一个 n 维的盒子,所以在上一节打印出来的observation是一个长度为 4 的数组。数组中的每个元素都具有上下界。

利用运动空间和观测空间的定义和范围,在许多仿真环境中,BoxDiscrete是最常见的空间描述,在智体每次执行动作时,都属于这些空间范围内,代码示例为:

from gym import spaces
space = spaces.Discrete(6)
# Set with 6 elements {0, 1, 2, ..., 6}
x = space.sample()
print(space.contains(x))
print(space.n == 6)
True
True

CartPole-v0栗子中,运动只能选择左和右,分别用{0,1}表示

对于step的详细说明

上面我们只是每次做随机的action, 为了更好的进行action, 我们需要知道每一步step之后的返回值. 事实上, step会返回四个值. 下面我们一一进行介绍.

  • 观测 Observation (Object):当前step执行后,环境的观测(类型为对象)。例如,从相机获取的像素点,机器人各个关节的角度或棋盘游戏当前的状态等;
  • 奖励 Reward (Float): 执行上一步动作(action)后,智能体( agent)获得的奖励(浮点类型),不同的环境中奖励值变化范围也不相同,但是强化学习的目标就是使得总奖励值最大;
  • 完成 Done (Boolen): 表示是否需要将环境重置 env.reset。大多数情况下,当 Done 为True 时,就表明当前回合(episode)或者试验(tial)结束。例如当机器人摔倒或者掉出台面,就应当终止当前回合进行重置(reset);
  • 信息 Info (Dict): 针对调试过程的诊断信息。在标准的智体仿真评估当中不会使用到这个info,

在 Gym 仿真中,每一次回合开始,需要先执行 reset() 函数,返回初始观测信息,然后根据标志位 done 的状态,来决定是否进行下一次回合。所以更恰当的方法是遵守done的标志.

import gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
observation = env.reset()
for t in range(100):
env.render()
print(observation)
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t+1))
break
env.close()

done 为true时,控制失败,此阶段episode 结束。可以计算每 episode 的回报就是其坚持的t+1时间,坚持的越久回报越大.在上面算法中,agent 的行为选择是随机的,平均回报为20左右。

*再次说明gym模块中环境的常用函数

gym的初始化

env = gym.make('CartPole-v0')
# 定义使用gym库中的某一个环境,'CartPole-v0'可以改为其它环境
env = env.unwrapped
# unwrapped是打开限制的意思

gym的各个参数的获取

env.action_space
# 查看这个环境中可用的action有多少个,返回Discrete()格式
env.observation_space
# 查看这个环境中observation的特征,返回Box()格式
n_actions=env.action_space.n
# 查看这个环境中可用的action有多少个,返回int
n_features=env.observation_space.shape[0]
# 查看这个环境中observation的特征有多少个,返回int

刷新环境

env.reset()
# 用于一个done后环境的重启,获取回合的第一个observation
env.render()
# 用于每一步后刷新环境状态
observation_, reward, done, info = env.step(action)
# 获取下一步的环境、得分、检测是否完成。

实例应用

平衡杆测试代码:以AC算法为例,详细解析看下面链接分析。


import numpy as np
import tensorflow as tf
import gym import tensorflow.compat.v1 as tf
tf.disable_v2_behavior() tf.compat.v1.disable_eager_execution() #这句话可有可无 np.random.seed(2)
tf.set_random_seed(2) # reproducible # Superparameters
OUTPUT_GRAPH = False
MAX_EPISODE = 3000
DISPLAY_REWARD_THRESHOLD = 200 # renders environment if total episode reward is greater then this threshold
MAX_EP_STEPS = 1000 # maximum time step in one episode
RENDER = False # rendering wastes time
GAMMA = 0.9 # reward discount in TD error
LR_A = 0.001 # learning rate for actor
LR_C = 0.01 # learning rate for critic env = gym.make('CartPole-v0')
env.seed(1) # reproducible
env = env.unwrapped N_F = env.observation_space.shape[0]
N_A = env.action_space.n class Actor(object):
def __init__(self, sess, n_features, n_actions, lr=0.001):
self.sess = sess self.s = tf.placeholder(tf.float32, [1, n_features], "state")
self.a = tf.placeholder(tf.int32, None, "act")
self.td_error = tf.placeholder(tf.float32, None, "td_error") # TD_error with tf.variable_scope('Actor'):
l1 = tf.layers.dense(
inputs=self.s,
units=20, # number of hidden units
activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l1'
) self.acts_prob = tf.layers.dense(
inputs=l1,
units=n_actions, # output units
activation=tf.nn.softmax, # get action probabilities
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='acts_prob'
) with tf.variable_scope('exp_v'):
log_prob = tf.log(self.acts_prob[0, self.a])
self.exp_v = tf.reduce_mean(log_prob * self.td_error) # advantage (TD_error) guided loss with tf.variable_scope('train'):
self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v) # minimize(-exp_v) = maximize(exp_v) def learn(self, s, a, td):
s = s[np.newaxis, :] feed_dict = {self.s: s, self.a: a, self.td_error: td} _, exp_v = self.sess.run([self.train_op, self.exp_v], feed_dict) return exp_v def choose_action(self, s):
s = s[np.newaxis, :]
probs = self.sess.run(self.acts_prob, {self.s: s}) # get probabilities for all actions
return np.random.choice(np.arange(probs.shape[1]), p=probs.ravel()) # return a int class Critic(object):
def __init__(self, sess, n_features, lr=0.01):
self.sess = sess self.s = tf.placeholder(tf.float32, [1, n_features], "state")
self.v_ = tf.placeholder(tf.float32, [1, 1], "v_next")
self.r = tf.placeholder(tf.float32, None, 'r') with tf.variable_scope('Critic'):
l1 = tf.layers.dense(
inputs=self.s,
units=20, # number of hidden units
activation=tf.nn.relu, # None
# have to be linear to make sure the convergence of actor.
# But linear approximator seems hardly learns the correct Q.
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l1'
) self.v = tf.layers.dense(
inputs=l1,
units=1, # output units
activation=None,
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='V'
) with tf.variable_scope('squared_TD_error'):
self.td_error = self.r + GAMMA * self.v_ - self.v
self.loss = tf.square(self.td_error) # TD_error = (r+gamma*V_next) - V_eval
with tf.variable_scope('train'):
self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss) def learn(self, s, r, s_):
s, s_ = s[np.newaxis, :], s_[np.newaxis, :] v_ = self.sess.run(self.v, {self.s: s_})
td_error, _ = self.sess.run([self.td_error, self.train_op],
{self.s: s, self.v_: v_, self.r: r})
return td_error sess = tf.Session() actor = Actor(sess, n_features=N_F, n_actions=N_A, lr=LR_A)
critic = Critic(sess, n_features=N_F, lr=LR_C) # we need a good teacher, so the teacher should learn faster than the actor sess.run(tf.global_variables_initializer()) if OUTPUT_GRAPH:
tf.summary.FileWriter("logs/", sess.graph) for i_episode in range(MAX_EPISODE):
s = env.reset()
t = 0
track_r = []
while True:
if RENDER: env.render() a = actor.choose_action(s) s_, r, done, info = env.step(a) if done: r = -20 track_r.append(r) td_error = critic.learn(s, r, s_) # gradient = grad[r + gamma * V(s_) - V(s)]
actor.learn(s, a, td_error) # true_gradient = grad[logPi(s,a) * td_error] s = s_
t += 1 if done or t >= MAX_EP_STEPS:
ep_rs_sum = sum(track_r) if 'running_reward' not in globals():
running_reward = ep_rs_sum
else:
running_reward = running_reward * 0.95 + ep_rs_sum * 0.05
if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True # rendering
print("episode:", i_episode, " reward:", int(running_reward))
break

更多实例教程可以参考我下面的文章在本地或者在parl中制作自己的游戏环境:

PaddlePaddlle强化学习及PARL框架{飞桨}

【一】-环境配置+python入门教学

【二】-Parl基础命令

【三】-Notebook、&pdb、ipdb 调试

【四】-强化学习入门简介

【五】-Sarsa&Qlearing详细讲解

【六】-DQN

【七】-Policy Gradient

【八】-DDPG

【九】-四轴飞行器仿真

都有详细原理分析和码源解释的。

【二】gym初次入门一学就会---代码详细解析简明教程----平衡杆案例的更多相关文章

  1. Python入门必学:递归函数正确的操作使用方法,案例详解

    递归函数,在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以 ...

  2. Jmeter(二十) - 从入门到精通 - JMeter监听器 -下篇(详解教程)

    1.简介 监听器用来监听及显示JMeter取样器测试结果,能够以树.表及图形形式显示测试结果,也可以以文件方式保存测试结果,JMeter测试结果文件格式多样,比如XML格式.CSV格式.默认情况下,测 ...

  3. Jmeter(二十一) - 从入门到精通 - JMeter断言 - 上篇(详解教程)

    1.简介 最近由于宏哥在搭建自己的个人博客可能更新的有点慢.断言组件用来对服务器的响应数据做验证,常用的断言是响应断言,其支持正则表达式.虽然我们的通过响应断言能够完成绝大多数的结果验证工作,但是JM ...

  4. Jmeter(二十三) - 从入门到精通 - JMeter函数 - 上篇(详解教程)

    1.简介 在性能测试中为了真实模拟用户请求,往往我们需要让提交的表单内容每次都发生变化,这个过程叫做参数化.JMeter配置元件与前置处理器都能帮助我们进行参数化,但是都有局限性,为了帮助我们能够更好 ...

  5. 小白学Python | 最简单的Django 简明教程

    作者:浅雨凉 来源:http://www.cnblogs.com/qianyuliang/p/6814376.html 一.Django简介 1. web框架介绍 具体介绍Django之前,必须先介绍 ...

  6. SLAM+语音机器人DIY系列:(二)ROS入门——4.如何编写ROS的第一个程序hello_world

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  7. 使用Code First建模自引用关系笔记 asp.net core上使用redis探索(1) asp.net mvc控制器激活全分析 语言入门必学的基础知识你还记得么? 反射

    使用Code First建模自引用关系笔记   原文链接 一.Has方法: A.HasRequired(a => a.B); HasOptional:前者包含后者一个实例或者为null HasR ...

  8. Monitor HDU6514 二维差分入门学习

    Monitor HDU 6514 二维差分入门学习 题意 小腾有\(n*m\)的田地,但是有小偷来偷东西,在一片矩形区域上,有一部分区域是监控可以覆盖到的,这部分区域由一个或多个包含于该矩形区域的小矩 ...

  9. python入门灵魂5问--python学习路线,python教程,python学哪些,python怎么学,python学到什么程度

    一.python入门简介 对于刚接触python编程或者想学习python自动化的人来说,基本都会有以下python入门灵魂5问--python学习路线,python教程,python学哪些,pyth ...

  10. webpack入坑之旅(二)loader入门

    这是一系列文章,此系列所有的练习都存在了我的github仓库中vue-webpack 在本人有了新的理解与认识之后,会对文章有不定时的更正与更新.下面是目前完成的列表: webpack入坑之旅(一)不 ...

随机推荐

  1. L2-018 多项式A除以B (25 分) (math)

    这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出一个非零多项式,先给出A,再给出B.每行的 ...

  2. Codeforces Round #707 (Div. 2, based on Moscow Open Olympiad in Informatics Editorial

    Codeforces Round #707 (Div. 2, based on Moscow Open Olympiad in Informatics) Problem 1501A. Alexey a ...

  3. Spring自带的Objects等工具类(减少繁琐代码)

    断言: AssertUtils assert 关键字在 JDK1.4 中引入,可通过 JVM 参数-enableassertions开启 SpringBoot 中提供了 Assert 断言工具类,通常 ...

  4. 08.25北京站|阿里云Serverless 技术实践营( AI 专场)开放报名

    活动简介 阿里云 Serverless 技术实践营(AI 专场)是一场以聚焦企业级 AIGC 应用开发与落地展开的主题活动,活动受众以关注 Serverless 和 AI 技术的开发者.企业决策人.云 ...

  5. 【RK3399】1.RK3399开发板基础配置

    最近在小黄鱼入手了一个RK3399的开发板,RK的芯片我也是第一次使用.FireFly配套提供了完善的教程,可以在他们的WIKI上找到.上面有的内容就不在本文叙述了,大家可以参考教程https://w ...

  6. Vue插件—vant当中van-list的使用

    https://www.cnblogs.com/xbxxf/p/12889843.html 注意:父级元素不能加overflow:auto: 1 getPendingWorkList() { 2 co ...

  7. pojo层、dao层、service层、controller层的作用

    分层解耦介绍 1.pojo层(model) 实体层 数据库在项目中的类 model是模型的意思,与entity.domain.pojo类似,是存放实体的类. 类中定义了多个类属性,并与数据库表的字段保 ...

  8. 【rt-thread】构建自己的项目工程 -- 初始篇

    现以stm32f429igt6芯片的板子 & Keil5编译环境为例,记述构建适配自己板子的rt-thread工程的过程 1.拿到rt-thread源码,进入bsp/stm32/librari ...

  9. JVM大页内存的学习与使用

    JVM大页内存的学习与使用 原理和背景 操作系统是计算机的重要组成部分. 现代的操作系统一般都采用 段页式内存管理. 段一般是为了管理和权限 页主要是为了虚拟内存和物理内存的映射. 分页管理可以让物理 ...

  10. VMto阿里云的简单过程

    VMto阿里云的简单过程 第一步打开网站 https://smcnext.console.aliyun.com/sourceServers/importMigrationSource?spm=5176 ...