基于R语言的raster包读取遥感影像
本文介绍基于R语言中的raster包,读取单张或批量读取多张栅格图像,并对栅格图像数据加以基本处理的方法。
1 包的安装与导入
首先,我们需要配置好对应的R语言包;前面也提到,我们这里选择基于raster包来实现栅格图像数据的读取与处理工作。首先,如果有需要的话,我们可以先到raster包在R语言的官方网站中,查阅raster包的基本情况,比如其作者信息、当前的版本、所依赖的其他包等等;如下图所示。

当然,这些内容看不看都不影响我们接下来的操作。接下来,我们开始安装raster包;这里我是在RStudio中进行代码的撰写的。
首先,我们输入如下的代码,从而开始raster包的下载与自动配置。
install.packages("raster")
随后,按下回车键,运行代码,如下图所示。

可以看到,我们在安装raster包时,会自动将其所需依赖的其他包(如果在此之前没有配置过)都一并配置好,非常方便。
接下来,输入如下的代码,从而将刚刚配置好的raster包导入。
library(raster)
随后,按下回车键,运行代码,如下图所示。

此时,在RStudio右下方的“Packages”中,可以看到raster包以及其所依赖的sp包都处于选中的状态,表明二者都已经配置成功,且完成导入。

2 单一栅格图像读取与处理
接下来,我们首先开始读取、处理单独一景栅格图像数据。
首先,我们输入如下的代码;其中第一句是指定接下来要打开的栅格图像的路径与文件名,第二句则是通过raster()函数打开这一栅格图像。
tif_file_name <- r"(E:\02_Project\01_Chlorophyll\ClimateZone\Split\A_LCC0.TIF)"
tif_file <- raster(tif_file_name)
运行上述代码。此时,我们可以在RStudio中右上方的“Environment”中看到我们刚刚新建的两个变量,以及其对应的值。

接下来,我们可以直接通过plot()函数,对刚刚读取到的栅格图像数据加以绘制。
plot(tif_file)
运行代码后,可以在RStudio中右下方的“Plots”看到绘制完毕的图像。可以说,这一绘制栅格图像的方式,相较于Python、C++等语言都更为方便。

随后,我们简单介绍一下对这一栅格图像数据的处理操作。例如,我们可以通过mean()函数与sd()函数,计算栅格图像全部像元数值的平均值和标准差;这里我们用到了na.rm = TRUE参数,具体含义稍后会提到。
tif_mean <- mean(tif_file[], na.rm = TRUE)
tif_std <- sd(tif_file[], na.rm = TRUE)
运行上述代码,随后输入如下的代码,即可查看我们刚刚计算得到的平均值与标准差。
tif_mean
tif_std
结果图下图所示。

前面我们提到了na.rm = TRUE参数,这一参数表示是否消除数据集中无效值NA的影响;如果我们不将其设置为TRUE,那么就表示不消除数据集中的无效值;而如果我们的栅格图像中出现无效值(NoData值),那么就会使得平均值、标准差等计算结果同样为无效值NA;如下图所示。

3 大量栅格图像读取与处理
接下来,我们介绍一下基于raster包批量读取大量栅格图像的方法。
首先,我们需要将存放有大量栅格图像的文件夹明确,并将其带入list.files()函数中;这一函数可以对指定路径下的文件加以遍历。其中,pattern是对文件名称加以匹配,我们用".tif$"表示只筛选出文件名称是以.tif结尾的文件;full.names表示是否将文件的全名(即路径名称加文件名称)返回,ignore.case表示是否不考虑匹配文件名称时的大小写差异。
tif_file_path <- list.files(r"(E:\02_Project\01_Chlorophyll\ClimateZone\Split\0)", pattern = ".tif$", full.names = TRUE, ignore.case = TRUE)
运行上述代码,并将这一变量打印出来,结果如下图所示。可以看到,此时我们已经将指定路径下的.tif格式的栅格图像全部提取出来了。

接下来,我们通过stack()函数,将全部栅格图像的数据放入同一个变量中;随后,我们可以打印一下这个变量,查看其中的内容。这里需要注意,如果通过这种方法批量读取栅格图像,需要保证每一景图像的空间参考信息、行数与列数完全一致,否则会弹出报错信息。如果大家的栅格图像行数与列数不完全一致,可以参考文章Python实现snap:对齐多张遥感影像的空间范围,对各个栅格图像加以统一。
tif_file_all <- stack(tif_file_path)
tif_file_all
运行上述代码,得到如下所示的结果。可以看到,这一变量中保存了12个图层(虽然栅格图像只有7景,但是其中有几景是具有多个波段的);其中,除了最基本的栅格图像维度、空间范围、空间参考信息等内容,names还展示了12个图层各自的名称,min values与max values则还展示了每一个图层的最小值与最大值。

此外,我们还可以继续基于plot()函数,直接批量绘制多个图层各自的栅格图像。
plot(tif_file_all)
运行上述代码,结果如下所示。

此外,我们还可以基于mean()等函数,对栅格图像的基本数学统计信息加以计算。不过在对多个栅格图像数据加以计算时需要注意,在tif_file_all后是否添加[]符号,得到的结果是不一样的——如果不添加[]符号,我们相当于是加以逐像元分析,对每一个位置的像元在12个图层中的数值加以统计,并计算该像元在12个图层中的平均值;因此最终所得结果是一景新的栅格图像,图像中的每一个像元数值都表示该像元在12个图层中的平均值。而如果我们添加了[]符号,那么就和前述单一栅格图像的处理一样,计算的结果就是一个数值,即12个图层中每一个像元对应数值的总体的平均值。
tif_all_mean <- mean(tif_file_all, na.rm = TRUE)
tif_all_mean_2 <- mean(tif_file_all[], na.rm = TRUE)
我们分别打印上述两个变量,得到结果如下图所示。

由此可以更加明显地看出添加[]符号与否的差异。
本文就只是对R语言raster包读取、处理栅格数据加以基本的方法介绍,至于更加深入的用法,我们将在后期的文章中加以介绍。
基于R语言的raster包读取遥感影像的更多相关文章
- R语言中文分词包jiebaR
R语言中文分词包jiebaR R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据 ...
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- 基于R语言的时间序列指数模型
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Lon ...
- 基于R语言的ARIMA模型
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及 ...
- R语言:recommenderlab包的总结与应用案例
R语言:recommenderlab包的总结与应用案例 1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算 ...
- 使用R语言的RTCGA包获取TCGA数据--转载
转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA TCGA数据源 - R包RTCGA的简单介绍 - 首先安装及加载包 - 指定任意基因 ...
- 中文分词实践(基于R语言)
背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事 ...
- [R语言] 基于R语言实现环状条形图的绘制
环状条形图(Circular barplot)是条形图的变体,图如其名,环状条形图在视觉上很吸引人,但也必须小心使用,因为环状条形图使用的是极坐标系而不是笛卡尔坐标系,每一个类别不共享相同的Y轴.环状 ...
- 概率图模型 基于R语言 这本书中的第一个R语言程序
概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = ...
- Twitter基于R语言的时序数据突变检测(BreakoutDetection)
Twitter开源的时序数据突变检测(BreakoutDetection),基于无参的E-Divisive with Medians (EDM)算法,比传统的E-Divisive算法快3.5倍以上,并 ...
随机推荐
- 程序设计实验第一学期期末考试复习用源代码【C语言深度解剖】【超详细注释】
有关此篇 在这里博主先告诉大家,博主在学校学的C语言课本是<谭浩强的C语言>那这本红色的书. 博主到期末阶段是学到了结构体那一章,下面是博主的复习代码,是一些比较有编程思想的一些源代码,博 ...
- C++——异常处理模块笔记
异常处理是C++中的重要概念之一,用于处理在程序执行过程中可能发生的错误或异常情况.异常是指在程序执行过程中发生的一些不寻常的事件,例如除零错误.访问无效内存等.C++提供了一套异常处理机制,使得程序 ...
- Django高级特性:django-apscheduler定时任务
前言: 在使用Django框架开发web项目时,很多时候需要设置定时任务或让用户手动在页面上设置定时任务 在Django中实现定时任务功能大概有以下三种方法: Celery 分布式任务队列.侧重实 ...
- JS leetcode 拥有最多糖果的孩子 题解分析,六一快乐。
壹 ❀ 引 今天是六一儿童节,leetcode的每日一题也特别可爱,那么今天我们来解决一道与糖果有关的问题,题目来源1431. 拥有最多糖果的孩子,题目描述如下: 给你一个数组 candies 和一个 ...
- MindSponge分子动力学模拟——定义Collective Variables
技术背景 在前面的几篇博客中,我们介绍了MindSponge分子动力学模拟框架的基本安装和使用和MindSponge执行分子动力学模拟任务的方法.这里我们介绍一个在增强采样领域非常常用的工具:Coll ...
- fmt、变量、常量
fmt包 fmt包主要用于打印数据,常用的有Printf.Print.Printf // 文件所属包 package main // 导入fmt包,主要用于打印数据 import "fmt& ...
- win32 - EnumDisplayDevices和EnumDisplayMonitors的使用
EnumDisplayDevices枚举适配器 EnumDisplayMonitors枚举监视器 #pragma comment(lib, "dxva2.lib") #includ ...
- 【Android 逆向】apk反编译后重打包
1. 执行 apktool b smali_dir smali_dir 为反编译出来的数据目录 执行后可能会报错 I: Building resources... W: /root/Desktop/t ...
- git commit 不生成 changeId 解决方案
1). 检查仓储 .git/hook 下面是否有 commit-msg 文件,如果没有可以到下面的地址下载,或者把其他同事的 commit-msg 文件拷贝到你的 .git/hook 重新commit ...
- 【LeetCode二叉树#15】二叉搜索树中的众数(递归中序遍历)
二叉搜索树中的众数 力扣题目链接(opens new window) 给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素). 假定 BST 有如下定义: 结点左子树 ...