题解-CTS2019 珍珠
题面
有 \(n\) 个在 \([1,d]\) 内的整数,求使可以拿出 \(2m\) 个整数凑成 \(m\) 个相等的整数对的方案数。
数据范围:\(0\le m\le 10^9\),\(1\le n\le 10^9\),\(1\le d\le 10^5\)。
蒟蒻语
非常巧妙的题,主要要用到二项式反演、指数级生成函数和 NTT。
做个广告,这是我读过最好的生成函数讲解:link。
蒟蒻解
设 \(c_i\) 表示 \(i\) 这个数的出现次数。
设 \(odd=\sum [c_i\in {\rm odd} ]\),即 \(c_i\) 奇数个数。
很明显最多能凑成 \(\frac{n-odd}{2}\) 对,按题意:
\frac{n-odd}{2}&\ge m\\
odd&\le n-2m
\end{aligned}
\]
这里有两个特判,如果 \(n-2m<0\) 答案是 \(0\),如果 \(n-2m\ge d\) 答案是 \(d^n\)。
设 \(g(i)\) 表示 \(odd=i\) 的方案数。
设 \(f(i)\) 表示钦定 \(i\) 个 \(c_i\) 是奇数,剩下随意的方案数(不是 \(odd\ge i\) 的方案数,这里对一些排列会重复统计,但是反演完就没事了)。
\]
所以可以先求 \(f(i)\),用到了指数级生成函数,中间把每个 \(e\) 的幂次项展开,最后归成卷积形式:
f(i)=&{d \choose i} \left(\frac{e^x-e^{-x}}{2}\right)^i e^{(d-i)x} n![n]\\
=&{d \choose i} (e^x-e^{-x})^i e^{(d-i)x} \frac{n!}{2^i}[n]\\
=&{d \choose i} e^{(d-i)x} \sum_{j=0}^i(-1)^{i-j} {i\choose j}e^{(j-(i-j))x} \frac{n!}{2^i}[n]\\
=&{d \choose i} e^{(d-i)x} \sum_{j=0}^i(-1)^{i-j} {i\choose j}e^{(2j-i)x} \frac{n!}{2^i}[n]\\
=&{d \choose i} \frac{n!}{2^i}\sum_{j=0}^i(-1)^{j} {i\choose j}e^{(d-2j)x} [n]\\
=&{d \choose i} \frac{n!}{2^i}\sum_{j=0}^i(-1)^{j} {i\choose j} \frac{(d-2j)^n}{n!}\\
=&\frac{d!}{i!(d-i)!2^i}\sum_{j=0}^i(-1)^{j} \frac{i!}{j!(i-j)!} (d-2j)^n\\
=&\frac{d!}{(d-i)!2^i}\sum_{j=0}^i\frac{(-1)^{j}(d-2j)^n}{j!}\cdot \frac{1}{(i-j)!} \\
\end{aligned}
\]
最后一个难点是如何求:
\]
感觉可以凑成卷积形式,但总差一点。尝试把 \(f\) 和 \(g\) 都反过来,即令 \(f'(x)=f(d-x)\),\(g'(x)=g(d-x)\):
g(i)=&\sum_{x=i}^d(-1)^{x-i}{x\choose i} f(x)\\
=&\sum_{x=i}^d(-1)^{x-i}{x\choose i} f'(d-x)\\
=&\sum_{x=0}^{d-i}(-1)^{d-x-i}{d-x\choose i} f'(x)\\
\end{aligned}\\
g'(d-i)=\sum_{x=0}^{d-i}(-1)^{d-x-i}{d-x\choose i} f'(x)\\
\begin{aligned}
g'(i)=&\sum_{x=0}^{i}(-1)^{i-x}{d-x\choose d-i} f'(x)\\
=&\sum_{x=0}^{i}(-1)^{i-x}\frac{(d-x)!}{(d-i)!(i-x)!} f'(x)\\
=&\frac{1}{(d-i)!}\sum_{x=0}^{i} (-1)^{i-x}\frac{1}{(i-x)!}\cdot f'(x)(d-x)!\\
\end{aligned}\\
\]
然后就可以求 \(g(i)\) 了。
答案便是 \(\sum_{i=0}^{n-2m} g(i)\)。
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define bg begin()
#define ed end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),i##E=(b);i<i##E;i++)
#define L(i,a,b) for(int i=(b)-1,i##E=(a)-1;i>i##E;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
//Data
const int N=1e5;
int n,m,d,ans;
//Math
const int mod=998244353;
int Pow(int a,int x){
int res=1; for(;x;x>>=1,a=1ll*a*a%mod)
if(x&1) res=1ll*res*a%mod; return res;
}
const int mN=N+1;
int fac[mN],ifac[mN];
void math_init(){
fac[0]=1;R(i,1,d+1) fac[i]=1ll*fac[i-1]*i%mod;
ifac[d]=Pow(fac[d],mod-2);
L(i,0,d) ifac[i]=1ll*ifac[i+1]*(i+1)%mod;
}
//Poly
const int pN=mN<<2;
int f[pN],g[pN];
const int G=3,iG=Pow(3,mod-2);
int rev[pN],pn;
void poly_init(){
pn=1<<int(ceil(log2(d*2+2)));
R(i,0,pn) rev[i]=(rev[i>>1]>>1)|((i&1)*(pn>>1));
}
void NTT(int* a,int t){
R(i,0,pn)if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int mid=1;mid<pn;mid<<=1){
int wn=Pow(~t?G:iG,(mod-1)/(mid<<1));
for(int i=0;i<pn;i+=(mid<<1)){
int w=1;
R(j,i,mid+i){
int x=a[j],y=1ll*a[mid+j]*w%mod;
a[j]=(x+y)%mod,a[mid+j]=(x-y+mod)%mod,w=1ll*w*wn%mod;
}
}
}
if(!~t){
int in=Pow(pn,mod-2);
R(i,0,pn) a[i]=1ll*a[i]*in%mod;
}
}
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>d>>n>>m;
if(n-2*m<0) return cout<<0<<'\n',0;
if(d<=n-2*m) return cout<<Pow(d,n)<<'\n',0;
math_init(),poly_init();
R(i,0,d+1){
f[i]=1ll*Pow((d-2*i+mod)%mod,n)*ifac[i]%mod;
if(i&1) f[i]=(mod-f[i])%mod;
g[i]=ifac[i];
}
R(i,d+1,pn) f[i]=g[i]=0;
NTT(f,1),NTT(g,1);
R(i,0,pn) f[i]=1ll*f[i]*g[i]%mod;
NTT(f,-1);
R(i,d+1,pn) f[i]=g[i]=0;
R(i,0,d+1) f[i]=1ll*f[i]*fac[d]%mod*ifac[d-i]%mod*Pow(2,mod-1-i)%mod;
reverse(f,f+d+1);
R(i,0,d+1) f[i]=1ll*f[i]*fac[d-i]%mod;
R(i,0,d+1){
g[i]=ifac[i];
if(i&1) g[i]=(mod-g[i])%mod;
}
R(i,d+1,pn) f[i]=g[i]=0;
NTT(f,1),NTT(g,1);
R(i,0,pn) g[i]=1ll*f[i]*g[i]%mod;
NTT(g,-1);
R(i,d+1,pn) f[i]=g[i]=0;
R(i,0,d+1) g[i]=1ll*g[i]*ifac[d-i]%mod;
reverse(g,g+d+1);
R(i,0,n-2*m+1) (ans+=g[i])%=mod;
cout<<ans<<'\n';
return 0;
}
祝大家学习愉快!
题解-CTS2019 珍珠的更多相关文章
- 【题解】CTS2019珍珠(二项式反演+卷积)
[题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...
- [CTS2019]珍珠——二项式反演
[CTS2019]珍珠 考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m 其实看起来很像生成函数了 n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而 ...
- 题解 P5401 [CTS2019]珍珠
蒟蒻语 这题太玄学了,蒟蒻写篇题解来让之后复习 = = 蒟蒻解 假设第 \(i\) 个颜色有 \(cnt_i\) 个珍珠. \(\sum\limits_{i=1}^{n} \left\lfloor\f ...
- Luogu5401 CTS2019珍珠(生成函数+容斥原理+NTT)
显然相当于求有不超过n-2m种颜色出现奇数次的方案数.由于相当于是对各种颜色选定出现次数后有序排列,可以考虑EGF. 容易构造出EGF(ex-e-x)/2=Σx2k+1/(2k+1)!,即表示该颜色只 ...
- LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT
传送门 题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数.问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\( ...
- [LOJ#3120][Luogu5401][CTS2019]珍珠(容斥+生成函数)
https://www.luogu.org/blog/user50971/solution-p5401 #include<cstdio> #include<algorithm> ...
- 题解-CTS2019氪金手游
Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3 ...
- 题解-CTS2019随机立方体
problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一 ...
- [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)
这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...
随机推荐
- cetos6.5 gcc4.8 安装
1.准备源 #安装仓库 wget http://people.centos.org/tru/devtools-2/devtools-2.repo mv devtools-2.repo /etc/yum ...
- day92:flask:flask简介&基本运行&路由&HTTP请求和响应
目录 1.Flask简介 2.关于使用flask之前的准备 3.flask的基本运行 4.flask加载配置 5.传递路由参数(没有限定类型) 6.传递路由参数(通过路由转换器限定路由参数的类型) 7 ...
- python之《set》
set 是python里面的集合的概念 list_1 = [1,2,3,4,5,6,] list_2 = set(list_1) print(list_1,type(list_1)) print(li ...
- kubernetes个人笔记(一)
一.证书工具 CFSSL keytools,openssl 1.介绍 CFSSL is CloudFlare's PKI/TLS swiss army knife. It is both a comm ...
- 思维导图哪款好用?怎么借助MindManager 做旅游计划
世界那么大,想不想去看看!想不想来一场说走就走的旅行?尤其是在新冠的笼罩下, 2020年已经过去四分之三,国内疫情已经基本得到了控制,接下来的日子里你想出门好好玩玩吗? 说走就走的旅游虽然美好,但是你 ...
- ABBYY FineReader 与资源管理器的集成使用
ABBYY FineReader 15(Windows系统)与 Windows 资源管理器的集成使用后,在不打开软件的情况下,可通过右击启动快捷菜单开启. 通过与Windows资源管理器的集成,用户可 ...
- jQuery 第十章 工具方法-高级方法 $.ajax() $.Callbacks() .....
$.ajax() $.Callbacks() $.Deferred() .then() $.when() ---------------------------------------------- ...
- objetive-C中属性变量和成员变量
属性变量 @property和@synthesize可以自动生成某个类成员变量的存取方法. readwrite:这个属性是默认的情况,会自动生成存取器 assign:这个属性一般用来处理基础类型,比如 ...
- PHP 递归删除目录中文件
/** * 递归删除目录中文件 * @param $pathname * @return bool */public static function delDir($pathname)//要删除的目录 ...
- Mac 上超好用的代码对比工具 beyond compare,对比json差异
导读 昨天下午,公司业务跑不通,然后开发组长让架构师联系我,给我发一个json和部署到dev上的微服务url,让我去测试下,将发来的json放到json.cn上愣是解析不出来,我就用之前的json请求 ...