Netty学习:ChannelHandler执行顺序详解,附源码分析
近日学习Netty,在看书和实践的时候对于书上只言片语的那些话不是十分懂,导致尝试写例子的时候遭遇各种不顺,比如decoder和encoder还有HttpObjectAggregator的添加顺序,研究了一番之后和大家分享一下自己的理解,希望后来人可以少走弯路。
模型浅析
简单描述下ChannelHandler的存储模型,ChannelHandler在ChannelPipeline中主要以AbstractChannelHandlerContext为基类存储,存储的数据结构为链表,传进去的ChannelHandler都会转化为DefaultChannelHandlerContext来存储在ChannelPipeline里,ChannelPipeline主要的实现为DefaultChannelPipeline。
DefaultChannelPipeline
DefaultChannelPipeline使用双向链表储存所有AbstractChannelHandlerContext,定义如下:
public class DefaultChannelPipeline implements ChannelPipeline {
static final InternalLogger logger = InternalLoggerFactory.getInstance(DefaultChannelPipeline.class);
private static final String HEAD_NAME = generateName0(DefaultChannelPipeline.HeadContext.class);
private static final String TAIL_NAME = generateName0(DefaultChannelPipeline.TailContext.class);
private static final FastThreadLocal<Map<Class<?>, String>> nameCaches = new FastThreadLocal<Map<Class<?>, String>>() {
protected Map<Class<?>, String> initialValue() throws Exception {
return new WeakHashMap();
}
};
final AbstractChannelHandlerContext head;//双向链表,头指针
final AbstractChannelHandlerContext tail;//双向链表,尾指针
private final Channel channel;
private final ChannelFuture succeededFuture;
private final VoidChannelPromise voidPromise;
private final boolean touch = ResourceLeakDetector.isEnabled();
private Map<EventExecutorGroup, EventExecutor> childExecutors;
private Handle estimatorHandle;
private boolean firstRegistration = true;
private DefaultChannelPipeline.PendingHandlerCallback pendingHandlerCallbackHead;
private boolean registered;
……
}
在调用addLast(First,Before)等方法添加ChannelHandler到ChannelPipeline时,实际上是new了一个DefaultChannelHandlerContext对象插入到链表中:
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
final AbstractChannelHandlerContext newCtx;
synchronized(this) {
checkMultiplicity(handler);
newCtx = this.newContext(group, this.filterName(name, handler), handler);//第一个参数为eventgroup,第二个参数为通过方法获取的channelhandler名称,第三个为channelhandler
this.addLast0(newCtx);//构造完成后,last使用前插法插入链表尾部,first使用后插法插入链表头部
if(!this.registered) {
newCtx.setAddPending();
this.callHandlerCallbackLater(newCtx, true);
return this;
}
EventExecutor executor = newCtx.executor();
if(!executor.inEventLoop()) {
newCtx.setAddPending();
executor.execute(new Runnable() {
public void run() {
DefaultChannelPipeline.this.callHandlerAdded0(newCtx);
}
});
return this;
}
}
this.callHandlerAdded0(newCtx);
return this;
}
DefaultChannelHandlerContext
final class DefaultChannelHandlerContext extends AbstractChannelHandlerContext {
private final ChannelHandler handler;
DefaultChannelHandlerContext(DefaultChannelPipeline pipeline, EventExecutor executor, String name, ChannelHandler handler) {
super(pipeline, executor, name, isInbound(handler), isOutbound(handler));//调用父类构造方法创建context
if(handler == null) {
throw new NullPointerException("handler");
} else {
this.handler = handler;//保存handler引用
}
}
public ChannelHandler handler() {
return this.handler;
}
private static boolean isInbound(ChannelHandler handler) {
return handler instanceof ChannelInboundHandler;
}
private static boolean isOutbound(ChannelHandler handler) {
return handler instanceof ChannelOutboundHandler;
}
}
Handler传递顺序
现在我们知道Pipeline里实际是一个context的链表,现在我们来看看fireChannelRead和write的传递顺序
fireChannelRead
调用fireChannelRead方法时,调用该方法的context会从自己开始在链表中根据自己的next指针来寻找下一个注册(invoke)的handler去处理事件,代码如下:
public ChannelHandlerContext fireChannelRead(Object msg) {
invokeChannelRead(this.findContextInbound(), msg);//将查找到的context传递进入执行channelRead方法,里面还有一些eventLoop的判断
return this;
}
private AbstractChannelHandlerContext findContextInbound() {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.next;
} while(!ctx.inbound);//从当前context开始,查找到下一个为inbound的handler,所以说outbound和inbound的插入顺序与执行顺序或执行成功与否没有任何关系,只与最后链表的结果有关,并且当handler过多时会影响遍历速度
return ctx;
}
write
调用write方法时,调用该方法的context会从自己开始在链表中根据自己的pre指针来寻找上一个注册(invoke)的handler去处理事件,顺序与fireChannelRead相反,代码如下:
private void write(Object msg, boolean flush, ChannelPromise promise) {
AbstractChannelHandlerContext next = this.findContextOutbound();//查找到上一个outBoundContext
Object m = this.pipeline.touch(msg, next);
EventExecutor executor = next.executor();
if(executor.inEventLoop()) {
if(flush) {
next.invokeWriteAndFlush(m, promise);
} else {
next.invokeWrite(m, promise);
}
} else {
Object task;
if(flush) {
task = AbstractChannelHandlerContext.WriteAndFlushTask.newInstance(next, m, promise);
} else {
task = AbstractChannelHandlerContext.WriteTask.newInstance(next, m, promise);
}
safeExecute(executor, (Runnable)task, promise, m);
}
}
private AbstractChannelHandlerContext findContextOutbound() {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.prev;
} while(!ctx.outbound);
return ctx;
}
补充
如果write不调用context的write方法,而是调用context.channel().write(),则会直接调用使用pipeline的tail指针开始向前遍历outboundhandler执行,如果有特殊执行需求时可以考虑使用这种调用方法。相关源码就不贴了,有兴趣的小伙伴可以自己去看。
总结
到这里,Handler执行顺序已经介绍完毕了,总结为:
对于channelInboundHandler,总是会从传递事件的开始,向链表末尾方向遍历执行可用的inboundHandler。
对于channelOutboundHandler,总是会从write事件执行的开始,向链表头部方向遍历执行可用的outboundHandler。
举例说明如下代码:
ch.pipeline().addLast(new OutboundHandler1());
ch.pipeline().addLast(new OutboundHandler2());
ch.pipeline().addLast(new InboundHandler1());
ch.pipeline().addLast(new InboundHandler2());
链表中的顺序为head->out1->out2->in1->in2->tail
那么Inbound的执行顺序为read->in1->in2
在Inbound执行write后,outbound执行顺序为out1<-out2<-write
- 所以实际使用中,如果添加的顺序不好,很可能会意外跳过某些inbount或者outbound。建议实际使用上,先通过addFirst插入所有outBound再通过addLast插入所有inBound这样inBound与outBound的插入顺序与执行顺序完全一致,且不会出现跳过的情况。
很多源码中的习惯都是只使用addLast或者addFirst插入,然后顺序在心中,具体方法见仁见智,保证顺序不错就行 - 所以一些统一编码解码的handler,例如ssl,httpcodec,最好是按照顺序放在链表头!这样才会保证进出都会执行到并且业务逻辑可以正常插入
Netty学习:ChannelHandler执行顺序详解,附源码分析的更多相关文章
- Android应用AsyncTask处理机制详解及源码分析
1 背景 Android异步处理机制一直都是Android的一个核心,也是应用工程师面试的一个知识点.前面我们分析了Handler异步机制原理(不了解的可以阅读我的<Android异步消息处理机 ...
- Spring Boot启动命令参数详解及源码分析
使用过Spring Boot,我们都知道通过java -jar可以快速启动Spring Boot项目.同时,也可以通过在执行jar -jar时传递参数来进行配置.本文带大家系统的了解一下Spring ...
- 【转载】Android应用AsyncTask处理机制详解及源码分析
[工匠若水 http://blog.csdn.net/yanbober 转载烦请注明出处,尊重分享成果] 1 背景 Android异步处理机制一直都是Android的一个核心,也是应用工程师面试的一个 ...
- 线程池底层原理详解与源码分析(补充部分---ScheduledThreadPoolExecutor类分析)
[1]前言 本篇幅是对 线程池底层原理详解与源码分析 的补充,默认你已经看完了上一篇对ThreadPoolExecutor类有了足够的了解. [2]ScheduledThreadPoolExecut ...
- Java SPI机制实战详解及源码分析
背景介绍 提起SPI机制,可能很多人不太熟悉,它是由JDK直接提供的,全称为:Service Provider Interface.而在平时的使用过程中也很少遇到,但如果你阅读一些框架的源码时,会发现 ...
- SpringMVC异常处理机制详解[附带源码分析]
目录 前言 重要接口和类介绍 HandlerExceptionResolver接口 AbstractHandlerExceptionResolver抽象类 AbstractHandlerMethodE ...
- ArrayList用法详解与源码分析
说明 此文章分两部分,1.ArrayList用法.2.源码分析.先用法后分析是为了以后忘了查阅起来方便-- ArrayList 基本用法 1.创建ArrayList对象 //创建默认容量的数组列表(默 ...
- [转]SpringMVC拦截器详解[附带源码分析]
目录 前言 重要接口及类介绍 源码分析 拦截器的配置 编写自定义的拦截器 总结 前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:ht ...
- SpringMVC拦截器详解[附带源码分析]
目录 前言 重要接口及类介绍 源码分析 拦截器的配置 编写自定义的拦截器 总结 总结 前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:h ...
- Servlet容器Tomcat中web.xml中url-pattern的配置详解[附带源码分析]
目录 前言 现象 源码分析 实战例子 总结 参考资料 前言 今天研究了一下tomcat上web.xml配置文件中url-pattern的问题. 这个问题其实毕业前就困扰着我,当时忙于找工作. 找到工作 ...
随机推荐
- 【智简联接,万物互联】华为云·云享专家董昕:Serverless和微服务下, IoT的变革蓄势待发
摘要:Serverless.微服务,这些新技术和IoT有什么关系?纵观IoT行业的发展,云服务又扮演了什么角色? IoT并不是一个新名词.新技术,很长一段时间,它甚至给人一种"下工地&quo ...
- easyUI验证框赋值
下面来看看easyui的各种验证框赋值的方式: <input name="userId" id="userId" class="easyui-n ...
- js上 十四、对象
十四.对象 #1.初识对象 什么是对象? 在js中,一切皆是对象. 对象,生活中可见和不可见的东西,在世界中,客观存在的都是一个对象. 桌子,笔记本,手机,人. 在日常生活中,我们是如何来描述这个对象 ...
- [日常摸鱼]HDU1724 Ellipse-自适应Simpson法
模板题~ QAQ话说Simpson法的原理我还是不太懂-如果有懂的dalao麻烦告诉我~ 题意:每次给一个椭圆的标准方程,求夹在直线$x=l$和$x=r$之间的面积 Simpson法 (好像有时候也被 ...
- aaencode:用颜文字来加密吧
今天逛大佬博客发现了一个有意思的东西 ゚ω゚ノ= /`m´)ノ ~┻━┻ //*´∇`*/ ['_']; o=(゚ー゚) =_=3; c=(゚Θ゚) =(゚ー゚)-(゚ー゚); (゚Д゚) =(゚Θ゚ ...
- RabbitMQ史上最全文章
老规矩,本篇文章 不做 RabbitMQ 的 编码讲解 ,只介绍 文章学习的一些优秀文章 重点在于不要循规蹈矩,教程 这样走,你不一定要按他这样走,按自己的方式来,学习效率会更高,网上的教程有很多,今 ...
- 轻松理解HTTP缓存策略
上一篇文章我写了koa-static的源码解析,其中用到了HTTP的缓存策略,给返回的静态文件设置了一些缓存的头,比如Cache-Control之类的.于是我就跟朋友讨论了一下HTTP的缓存策略: 朋 ...
- 图解JanusGraph系列 - 关于JanusGraph图数据批量快速导入的方案和想法(bulk load data)
大家好,我是洋仔,JanusGraph图解系列文章,实时更新~ 图数据库文章总目录: 整理所有图相关文章,请移步(超链):图数据库系列-文章总目录 源码分析相关可查看github(码文不易,求个sta ...
- 开发你的第一个NCS(Zephyr)应用程序
Nordic有2套并存的SDK:老的nRF5 SDK和新的NCS SDK,两套SDK相互独立,大家选择其中一套进行开发即可.一般而言,如果你选择的芯片是nRF51或者nRF52系列,那么推荐使用nRF ...
- 【命令】kill命令
kill命令详解: <---用于向进程发送信号,以实现对进程的管理---> 语法格式:kill [-s signal|-SIGNAL] pid... kill -l [signal] ...