LINK:随机树

非常经典的期望dp.

考虑第一问:设f[i]表示前i个叶子节点的期望平均深度。

因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的。

\(f[i]=(f[i-1]\cdot (i-1)+(f[i-1]+1)\cdot 2-f[i-1])/i=f[i-1]+2/i\)

考虑第二问:可以设f[i][j]表示i个叶子节点树高恰好为j的概率。

转移即可 不过值得注意的是 P(i,k)有i个叶子k个被分给左子树的概率为1/(i-1) 这个可以通过计算得到。最终可以通过前缀和优化到n^3.

当然 根据最后答案的计算方式 我们可以将这个东西进行差分。

设f[i][j]表示i个叶子节点深度>=j的概率。

这样 \(f[i][j]+=(f[k][j-1]+f[i-k][j-1]-f[k][j-1]\cdot f[i-k][j-1])/(i-1)\)

最后除的那个 就是刚才得到的 k个节点被分到左子树的概率。

值得一提的是 初始化 f[i][0]=1. 这是必要的。

const int MAXN=110;
int Q,n;
db f[MAXN];//f[i]表示存在i个叶子节点的平均期望深度.
db g[MAXN][MAXN];//g[i][j]表示有i个节点深度>=j的概率.
int main()
{
freopen("1.in","r",stdin);
get(Q);get(n);
if(Q==1)
{
rep(2,n,i)f[i]=f[i-1]+2.0/i;
printf("%.6lf",f[n]);
}
else
{
g[1][0]=1;
rep(2,n,i)
{
g[i][0]=1;
rep(1,i-1,j)
{
rep(1,i-1,k)
g[i][j]+=(g[k][j-1]+g[i-k][j-1]-g[k][j-1]*g[i-k][j-1])/(i-1);
}
}
db ans=0;
rep(1,n,i)ans+=g[n][i];
printf("%.6lf",ans);
}
return 0;
}

luogu P3830 [SHOI2012]随机树 期望 dp的更多相关文章

  1. 洛谷P3830 [SHOI2012]随机树(期望dp)

    题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...

  2. luogu P3830 [SHOI2012]随机树

    输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结点平均 ...

  3. [SHOI2012]随机树[期望dp]

    题意 初始 \(1\) 个节点,每次选定一个叶子节点并加入两个儿子直到叶子总数为 \(n\),问叶子节点深度和的平均值的期望以及最大叶子深度的期望. \(n\leq 100\) . 分析 对于第一问, ...

  4. P3830 [SHOI2012]随机树 题解

    P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...

  5. P3830 [SHOI2012]随机树

    P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...

  6. 洛谷P3830 [SHOI2012]随机树——概率期望

    题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两 ...

  7. 洛谷 P3830 [SHOI2012]随机树

    https://www.luogu.org/problemnew/show/P3830 具体方法见代码.. 其实挺神奇的,概率可以先算出“前缀和”(A小于等于xxx的概率),然后再“差分”得到A恰好为 ...

  8. luoguP3830 [SHOI2012]随机树 期望概率 + 动态规划 + 结论

    题意非常的复杂,考虑转化一下: 每次选择一个叶节点,删除本叶节点(深度为$dep$)的同时,加入两个深度为$dep + 1$的叶节点,重复$n$轮 首先考虑第$1$问,(你看我这种人相信数据绝对是最大 ...

  9. [SHOI2012]随机树

    [SHOI2012]随机树 题目大意( 网址戳我! ) 随机树是一颗完全二叉树,初始状态下只有一个节点. 随机树的生成如下:每次随机选择一个叶子节点,扩展出两个儿子. 现在给定一个正整数\(n\)(\ ...

随机推荐

  1. 常用API - Scanner、Random、ArrayList

    API 概述 API(Application Programming Interface),应用程序编程接口. Java API是一本程序员的 字典 ,是JDK中提供给我们使用的类的说明文档. 这些类 ...

  2. 原生开发、H5开发、混合移动开发的优缺点

    一.原生开发(Native App开发) 原生开发,是在Android.IOS等移动平台上利用官方提供的开发语言.开发类库.开发工具进行App开发.比如Android是利用Java.Eclipse.A ...

  3. centos7-解决vim无法找到问题

    vim编辑器是Linux中的强大组件,是vi编辑器的加强版 在Linux命令行输入vim时提示:-bash:vim:common not found,之后按着查询到的解决办法整好了:   解决步骤如下 ...

  4. 关于c++中结构体列表初始化,聚合问题

    聚合(aggregate) C++语法规定:不能使用初始值列表来初始化"非聚合(non-aggregate)"的对象.那么,什么才算是"聚合"呢?C++认为聚合 ...

  5. springboot freemark linux 找不到ftl文件

    文件路径: 再idea中这样写是可以正常导出文件,但是 打成jar放到linux上就找不到文件了. String templatePath =WordUtils.class.getResource(& ...

  6. 三种存储方式DAS、NAS、SAN

    ------------恢复内容开始------------ 一.DAS.NAS.SAN在存储领域的位置 随着主机.磁盘.网络等技术的发展,数据存储的方式和架构也在一直不停改变,本文主要介绍目前主流的 ...

  7. 深克隆(deepclone)

    1.简单版: <script type="text/javascript"> const newObj = JSON.parse(JSON.stringify(oldO ...

  8. JVM 学习笔记(四)

    回顾: 在之前的文章中,我们主要体现了当堆内存设置的比较小的情况下,比如:-Xmx20M -Xms20M,在项目运行的过程中,不断往内存中去添加对象, 这时候就会出现OOM,也就是内存溢出,本文章将展 ...

  9. java 面向对象(三十三):泛型二 泛型在集合中的使用

    1. 在集合中使用泛型之前的例子 @Test public void test1(){ ArrayList list = new ArrayList(); //需求:存放学生的成绩 list.add( ...

  10. python数据处理(五)之数据清洗:研究、匹配与格式化

    1 前言 保持数据格式一致以及可读,否则数据不可能正确合并 清洗数据的过程中记下清洗过程的每一步,方便数据回溯以及过程复用 2 数据清洗基础知识 2.1 找出需要清洗的数据 仔细观察文件,观察数据字段 ...