一、题目

  The Triangle

二、分析

  动态规划入门题。

  状态转移方程$$DP[i][j] = A[i][j] + max(DP[i-1][j], DP[i][j])$$

三、AC代码

 1 #include <cstdio>
2 #include <cstring>
3 #include <iostream>
4 #include <algorithm>
5 #include <vector>
6 #include <cmath>
7
8 using namespace std;
9 #define ll long long
10 #define Min(a,b) ((a)>(b)?(b):(a))
11 #define Max(a,b) ((a)>(b)?(a):(b))
12 const int MAXN = 100;
13 int A[MAXN + 13][MAXN + 13];
14 int Ans[2][MAXN + 13];
15
16 int main()
17 {
18 int N;
19 while(scanf("%d", &N) != EOF) {
20 memset(A, 0, sizeof(A));
21 memset(Ans, 0, sizeof(Ans));
22 for(int i = 1; i <= N; i++) {
23 for(int j = 1; j <= i; j++) {
24 scanf("%d", &A[i][j]);
25 }
26 }
27 for(int i = 1; i <= N; i++) {
28 for(int j = 1; j <= i; j++) {
29 Ans[i&1][j] = A[i][j] + Max(Ans[(i-1)&1][j-1], Ans[(i-1)&1][j]);
30 }
31 }
32 int ans = 0;
33 for(int i = 1; i <= N; i++) {
34 ans = Max(ans, Ans[N&1][i]);
35 }
36 printf("%d\n", ans);
37 }
38 return 0;
39 }

POJ - 1163 The Triangle 【动态规划】的更多相关文章

  1. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  2. poj 1163 The Triangle &amp;poj 3176 Cow Bowling (dp)

    id=1163">链接:poj 1163 题意:输入一个n层的三角形.第i层有i个数,求从第1层到第n层的全部路线中.权值之和最大的路线. 规定:第i层的某个数仅仅能连线走到第i+1层 ...

  3. POJ 1163 The Triangle【dp+杨辉三角加强版(递归)】

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 49955   Accepted: 30177 De ...

  4. OpenJudge/Poj 1163 The Triangle

    1.链接地址: http://bailian.openjudge.cn/practice/1163 http://poj.org/problem?id=1163 2.题目: 总时间限制: 1000ms ...

  5. POJ 1163 The Triangle(经典问题教你彻底理解动归思想)

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 38195   Accepted: 22946 De ...

  6. POJ 1163 The Triangle 简单DP

    看题传送门门:http://poj.org/problem?id=1163 困死了....QAQ 普通做法,从下往上,可得状态转移方程为: dp[i][j]= a[i][j] + max (dp[i+ ...

  7. poj 1163 The Triangle

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43809   Accepted: 26430 De ...

  8. Poj 1163 The Triangle 之解题报告

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42232   Accepted: 25527 Description 7 3 ...

  9. poj 1163 The Triangle 搜索 难度:0

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37931   Accepted: 22779 De ...

随机推荐

  1. ArcGIS处理栅格数据(一)

    一.建立影像金字塔 ArcToolbox--数据管理工具--栅格--栅格属性--构建金字塔(pyramid) 说明:该方式一次只能为一张影像数据建立影像金字塔. ArcToolbox--数据管理工具- ...

  2. universities

  3. 解决.dll类等文件丢失或出错

    简单暴力: 去官网下载WIN10 SDK 并安装, 将本机的DLL类文件重新刷新一遍. https://developer.microsoft.com/en-US/windows/downloads/ ...

  4. Clipboard API

    Clipboard API click copy click copy demo clickGetNewsLink(data_ref = `newsLink`) { let that = this; ...

  5. Lua 从入门到放弃

    Lua 从入门到放弃 What is Lua? Lua is a powerful, efficient, lightweight, embeddable scripting language. It ...

  6. linux move file / folder bash command

    linux move file / folder bash command mv $ which mv $ man mv # mv [-f] source target/ target folder ...

  7. Object.stringify 循环引用 bug & TypeError: Converting circular structure to JSON

    Object.stringify 循环引用 bug & TypeError: Converting circular structure to JSON var obj = { a: &quo ...

  8. @media屏幕适应

    /** 屏幕特殊处理 我们用min-width时,小的放上面大的在下面,同理如果是用max-width那么就是大的在上面,小的在下面 **/ @media screen and (max-width: ...

  9. MVVM中的vm双向监听和mvc的缺点

    `MVVM`模型: - 即Model,模型,包括数据和一些基本操作 - 即View,视图,页面渲染结果- 即View-Model,模型与视图间的双向操作(无需开发人员干涉) `MVVM`中的`VM`要 ...

  10. DatePicker日期选择器的使用

    效果展示: 代码如下: <el-date-picker v-model="listQuery.times" type="daterange" range- ...