洛谷P1522 [USACO2.4]牛的旅行 Cow Tours
洛谷P1522 [USACO2.4]牛的旅行 Cow Tours
题意:
给出一些牧区的坐标,以及一个用邻接矩阵表示的牧区之间图。如果两个牧区之间有路存在那么这条路的长度就是两个牧区之间的欧几里得距离。
对于一个联通块,称之为一个牧场,也就是说一个牧场内任意一个牧区都可以到达该牧场内的任意的另外一个牧区。
对于一个牧场,它的直径是这个联通块内最短路的最大值。
现在让你在恰当地选择两个牧场,在这两个牧场中各自选一个牧区,在这两个牧区之间建路,要求建路之后所有牧场中最大的直径最小。这里其实如果产生了新的最大直径(也可能不产生新的最大直径),那么一定是在这个新的农场中产生的,所以这里不如说恰当选择两个牧场从中选择两个牧区建边,使得产生的新的牧场的直径最小。
输出建边之后所有农场中最大的直径。
题解:
很好的一道最短路题。
先按照题目要求建立邻接矩阵,之后再这个邻接矩阵中跑一次\(floyd\)。
用一个数组\(MaxDis\)维护对于每个牧区,它所在的牧场中离它最远的牧区的距离是多少。
这样枚举每个不存在边的牧场对,当假设他们连接之后,构成的新牧场的可能的直径\(d_{uv}=MaxDis[u]+MaxDis[v]+getDis(u,v)\),这里之所以说可能是因为可能原来\(u\)或\(v\)所在的农场直径比这个\(d_{uv}\)要大。
这里不需要考虑太细节,只需要用一个变量记录在不添加边的时候,所有牧场中直径的最大值,然后找到添加边之后最小的\(d\),在这两个值之间取较大的既是答案。原因很简单,我们担心的是\(d\)可能比原来的\(u\)或\(v\)所在牧场的直径小,所以新牧场的直径实际上是\(max\{d_{cur},d_u,d_v\}\),之后答案取\(min\{max\{d_{u_1v_1},d_{u_1},d_{v_1}\},d_{u_2v_2},d_{u_2},d_{v_2}\},...,d_{u_xv_x},d_{u_x},d_{v_x}\}\}\),这个等价于\(max\{d_{f_1},d_{f_2},...,d_{f_n},min\{d_{u_1v_1},d_{u_2v_2},...,d_{u_xv_x}\}\}=max\{max\{d_{f_i}\},min\{d_{u_jv_j}\}\}\),其中\(d_{f_i}\)表示第\(i\)个牧场的直径。
AC代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
const int Maxn = 200;
const double INF = 1e7;
double dis[Maxn][Maxn], pos[Maxn][2], MaxDis[Maxn];
double getDis(int x, int y) {
return sqrt(pow(pos[x][0] - pos[y][0], 2) + pow(pos[x][1] - pos[y][1], 2));
}
void solve() {
int n, t;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%lf %lf", &pos[i][0], &pos[i][1]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%1d", &t);
if (t == 1) {
dis[i][j] = dis[j][i] = getDis(i, j);
} else if (i != j) {
dis[i][j] = dis[j][i] = INF;
}
}
}
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dis[i][j] = std::min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
double max1 = 0, max2 = INF;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dis[i][j] != INF) {
MaxDis[i] = std::max(MaxDis[i], dis[i][j]);
max1 = std::max(max1, dis[i][j]);
}
}
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (dis[i][j] == INF) {
max2 = std::min(max2, MaxDis[i] + MaxDis[j] + getDis(i, j));
}
}
}
printf("%.6f\n", std::max(max1, max2));
}
int main() {
solve();
return 0;
}
洛谷P1522 [USACO2.4]牛的旅行 Cow Tours的更多相关文章
- P1522 [USACO2.4]牛的旅行 Cow Tours(Floyd)
题目描述 Farmer John 的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer Joh ...
- 洛谷P1522 牛的旅行 Cow Tours
---恢复内容开始--- P1522 牛的旅行 Cow Tours189通过502提交题目提供者该用户不存在标签 图论 USACO难度 提高+/省选-提交该题 讨论 题解 记录 最新讨论 输出格式题目 ...
- 洛谷 P1522 牛的旅行 Cow Tours 题解
P1522 牛的旅行 Cow Tours 题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不 ...
- [图论]牛的旅行 Cow Tours :Floyed-Warshall
牛的旅行 Cow Tours 目录 牛的旅行 Cow Tours 题目描述 输入格式 输出格式 输入输出样例 输入 #1 输出 #1 解析 代码 题目描述 农民 John的农场里有很多牧区.有的路径连 ...
- 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
- LCA【洛谷P2971】 [USACO10HOL]牛的政治Cow Politics
P2971 [USACO10HOL]牛的政治Cow Politics 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向 ...
- 洛谷P2870 - [USACO07DEC]最佳牛线Best Cow Line
Portal Description 给出一个字符串\(s(|s|\leq3\times10^4)\),每次从\(s\)的开头或结尾取出一个字符接在新字符串\(s'\)的末尾.求字典序最小的\(s'\ ...
- 洛谷 P1821 [USACO07FEB]银牛派对Silver Cow Party 题解
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
- 「洛谷P2906」[USACO08OPEN]牛的街区Cow Neighborhoods 解题报告
P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 题目描述 Those Who Know About Cows are aware of the way cows gr ...
随机推荐
- rac双节点+物理DG
注:以下文章均是看了黄伟老师的视频,记录为博客供以后使用. 双节点RAC搭建: http://blog.csdn.net/imliuqun123/article/details/76171289 RA ...
- kubernets之job资源
一 介绍job资源 1.1 前面介绍的RC,RS,DS等等,管控的pod都是需要长期持久的运行的应用,但是尝试考虑另外一种场景,在微服务的场景下,有些pod的作用就是需要 执行完一些命令之后正常 ...
- STM32延时函数的四种方法
单片机编程过程中经常用到延时函数,最常用的莫过于微秒级延时delay_us()和毫秒级delay_ms().本文基于STM32F207介绍4种不同方式实现的延时函数. 1.普通延时 这种延时方式应该是 ...
- 24V转5V稳压芯片,高效率的同步降压DC-DC变换器3A输出电流
PW2330开发了一种高效率的同步降压DC-DC变换器3A输出电流.PW2330在4.5V到30V的宽输入电压范围内工作集成主开关和同步开关,具有非常低的RDS(ON)以最小化传导损失.PW2330采 ...
- Mybatis解决字段与属性不匹配的问题、链表查询、嵌套查询、#{}和${}的区别
1.使用接口结合xml映射文件 创建一个接口,该接口要和映射文件匹配(接口中方法名要和映射文件中的id相同) 映射文件中命名空间要和接口全类名相同 测试: 创建一个与src同级的源文件夹resourc ...
- SpringBoot @Value 解析集合配置
引自:https://jitwxs.cn/d6d760c4.html 一.前言 在日常开发中,经常会遇到需要在配置文件中,存储 List 或是 Map 这种类型的数据.Spring 原生是支持这种数据 ...
- Visual Studio中自定义代码段!
Visual Studio中自定义代码段! 第一步:在编辑器中进行快捷键的输入[ctrl + shift + p] 或者 点击 查看 第一个选项就是!请看下图 第二步:选择你要配置代码段的语言, 这里 ...
- Java并发组件一之CountDownLatch
使用场景: 一个或N个线程,等待其它线程完成某项操作之后才能继续往下执行.CountDownLatch描述的是,一个或N个线程等待其他线程的关系. 使用方法: 设CountDownLatch个数:Co ...
- Mac下IDEA激活Jrebel
第一步:在idea中下载jrebel,过程省略 第二步:配置反向代理工具 Windows 版:http://blog.lanyus.com/archives/317.html MAC 版: 安装hom ...
- 找出10000内的素数 CSP
"Problem: To print in ascending order all primes less than 10000. Use an array of processes, SI ...