graph attention network(ICLR2018)官方代码详解(tensorflow)-稀疏矩阵版
论文地址:https://arxiv.org/abs/1710.10903
代码地址: https://github.com/Diego999/pyGAT
之前非稀疏矩阵版的解读:https://www.cnblogs.com/xiximayou/p/13622283.html
我们知道图的邻接矩阵可能是稀疏的,将整个图加载到内存中是十分耗费资源的,因此对邻接矩阵进行存储和计算是很有必要的。
我们已经讲解了图注意力网络的非稀疏矩阵版本,再来弄清其稀疏矩阵版本就轻松了,接下来我们将来看不同之处。
主运行代码在:execute_cora_sparse.py中
同样的,先加载数据:
adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = process.load_data(dataset)
其中adj是coo_matrix类型,features是lil_matrix类型。
对于features,我们最终还是:
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features.todense(), sparse_to_tuple(features)
将其:
features, spars = process.preprocess_features(features)
转换为原始矩阵。
对于biases:
if sparse:
biases = process.preprocess_adj_bias(adj)
else:
adj = adj.todense()
adj = adj[np.newaxis]
biases = process.adj_to_bias(adj, [nb_nodes], nhood=1)
如果是稀疏格式的,就调用biases = process.preprocess_adj_bias(adj):
def preprocess_adj_bias(adj):
num_nodes = adj.shape[0] #
adj = adj + sp.eye(num_nodes) # self-loop 给对角上+1
adj[adj > 0.0] = 1.0 #大于0的值置为1
if not sp.isspmatrix_coo(adj):
adj = adj.tocoo()
adj = adj.astype(np.float32) #类型转换
indices = np.vstack((adj.col, adj.row)).transpose() # This is where I made a mistake, I used (adj.row, adj.col) instead
# return tf.SparseTensor(indices=indices, values=adj.data, dense_shape=adj.shape)
return indices, adj.data, adj.shape
这里看两个例子:
我们可以通过indices,data,shape来构造一个coo_matrix。
在定义计算图中的占位符时:
if sparse:
#bias_idx = tf.placeholder(tf.int64)
#bias_val = tf.placeholder(tf.float32)
#bias_shape = tf.placeholder(tf.int64)
bias_in = tf.sparse_placeholder(dtype=tf.float32)
else:
bias_in = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_nodes, nb_nodes))
使用bias_in = tf.sparse_placeholder(dtype=tf.float32)。
再接着就是模型中了,在utils文件夹下的layers.py中:
# Experimental sparse attention head (for running on datasets such as Pubmed)
# N.B. Because of limitations of current TF implementation, will work _only_ if batch_size = 1!
def sp_attn_head(seq, out_sz, adj_mat, activation, nb_nodes, in_drop=0.0, coef_drop=0.0, residual=False):
with tf.name_scope('sp_attn'):
if in_drop != 0.0:
seq = tf.nn.dropout(seq, 1.0 - in_drop) seq_fts = tf.layers.conv1d(seq, out_sz, 1, use_bias=False) # simplest self-attention possible
f_1 = tf.layers.conv1d(seq_fts, 1, 1)
f_2 = tf.layers.conv1d(seq_fts, 1, 1) f_1 = tf.reshape(f_1, (nb_nodes, 1))
f_2 = tf.reshape(f_2, (nb_nodes, 1)) f_1 = adj_mat*f_1
f_2 = adj_mat * tf.transpose(f_2, [1,0]) logits = tf.sparse_add(f_1, f_2)
lrelu = tf.SparseTensor(indices=logits.indices,
values=tf.nn.leaky_relu(logits.values),
dense_shape=logits.dense_shape)
coefs = tf.sparse_softmax(lrelu) if coef_drop != 0.0:
coefs = tf.SparseTensor(indices=coefs.indices,
values=tf.nn.dropout(coefs.values, 1.0 - coef_drop),
dense_shape=coefs.dense_shape)
if in_drop != 0.0:
seq_fts = tf.nn.dropout(seq_fts, 1.0 - in_drop) # As tf.sparse_tensor_dense_matmul expects its arguments to have rank-2,
# here we make an assumption that our input is of batch size 1, and reshape appropriately.
# The method will fail in all other cases!
coefs = tf.sparse_reshape(coefs, [nb_nodes, nb_nodes])
seq_fts = tf.squeeze(seq_fts)
vals = tf.sparse_tensor_dense_matmul(coefs, seq_fts)
vals = tf.expand_dims(vals, axis=0)
vals.set_shape([1, nb_nodes, out_sz])
ret = tf.contrib.layers.bias_add(vals) # residual connection
if residual:
if seq.shape[-1] != ret.shape[-1]:
ret = ret + conv1d(seq, ret.shape[-1], 1) # activation
else:
ret = ret + seq return activation(ret) # activation
相应的位置都要使用稀疏的方式。
graph attention network(ICLR2018)官方代码详解(tensorflow)-稀疏矩阵版的更多相关文章
- graph attention network(ICLR2018)官方代码详解(te4nsorflow)
论文地址:https://arxiv.org/abs/1710.10903 代码地址: https://github.com/Diego999/pyGAT 我并没有完整看过这篇论文,但是在大致了解其原 ...
- 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...
- DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...
- ARM Cortex-M底层技术(2)—启动代码详解
杂谈 工作了一天,脑袋比较乱.一直想把底层的知识写成一个系列,希望可以坚持下去.为什么要写底层的东西呢?首先,工作用到了这部分内容,最近和内部Flash打交道比较多,自然而然会接触到一些底层的东西:第 ...
- 论文解读(FedGAT)《Federated Graph Attention Network for Rumor Detection》
论文信息 论文标题:Federated Graph Attention Network for Rumor Detection论文作者:Huidong Wang, Chuanzheng Bai, Ji ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- ASP.NET MVC 5 学习教程:生成的代码详解
原文 ASP.NET MVC 5 学习教程:生成的代码详解 起飞网 ASP.NET MVC 5 学习教程目录: 添加控制器 添加视图 修改视图和布局页 控制器传递数据给视图 添加模型 创建连接字符串 ...
- Github-karpathy/char-rnn代码详解
Github-karpathy/char-rnn代码详解 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan 2016-1-10 ...
- 十图详解tensorflow数据读取机制(附代码)转知乎
十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630
随机推荐
- C#设计模式之4-原型模式
原型模式(Prototype Pattern) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/395 访问. 原型模式属 ...
- Oracle创建主键优劣
创建主键方式 一个表的主键是唯一标识,不能有重复,不允许为空. 一个表的主键可以由一个字段或多个字段共同组成. -- 列级,表级建立主键 1.create table constraint_test ...
- 在虚拟机中安装Mysql
目录 下载Mysql 安装 配置mysql允许远程访问 下载Mysql 下载地址:http://dev.mysql.com/downloads/mysql 我这里下载的是安装版本 安装 配置mysql ...
- 漏洞重温之XSS(上)
漏洞简介 跨站脚本攻击(XSS)是指恶意攻击者往Web页面里插入恶意Script代码,当用户浏览页面之时,嵌入web网页中的script代码会被执行,从而达到恶意攻击用户的目的. XSS漏洞通常是通过 ...
- 【建议收藏】swoft的最佳实践
这是一篇使用 swoft 两个月后的总结文章!,后续会陆续更新的 这是 web-api 开发的总结,如果使用 websocket 等服务的可能不适用,本章节会对一些规范.习惯,或者优化进行一些说明 一 ...
- drop、truncate、delete功能介绍和三者间区别
一.delete 1.delete是DML,执行delete操作时,每次从表中删除一行,并且同时将该行的的删除操作记录在redo和undo表空间中以便进行回滚(rollback)和重做操作,但要注意表 ...
- Windows Server2008RFTP隔离账户的搭建
Step1:添加用户 打开DOS命令, net user net user u1 123.com /add net user u2 123.com /add Step2:创建文件夹 Step3:修改用 ...
- QT+VS环境配置中遇到的问题
大体流程参考的别人的博客流程如下: QT安装: https://blog.csdn.net/qq_42907800/article/details/107370967?> QT+VS环境配置 h ...
- Python 抓包程序(pypcap)
#/usr/bin/env python #-*-coding:utf8-*- #抓包脚本 """ This script is used to Capture and ...
- 下载 golang.org/x 包出错不用代理的解决办法
原文链接:https://www.jianshu.com/p/6fe61053c8aa?utm_campaign=maleskine&utm_content=note&utm_medi ...