本章代码:

这篇文章主要介绍了序列化与反序列化,以及 PyTorch 中的模型保存于加载的两种方式,模型的断点续训练。

序列化与反序列化

模型在内存中是以对象的逻辑结构保存的,但是在硬盘中是以二进制流的方式保存的。

  • 序列化是指将内存中的数据以二进制序列的方式保存到硬盘中。PyTorch 的模型保存就是序列化。

  • 反序列化是指将硬盘中的二进制序列加载到内存中,得到模型的对象。PyTorch 的模型加载就是反序列化。

PyTorch 中的模型保存与加载

torch.save

torch.save(obj, f, pickle_module, pickle_protocol=2, _use_new_zipfile_serialization=False)

主要参数:

  • obj:保存的对象,可以是模型。也可以是 dict。因为一般在保存模型时,不仅要保存模型,还需要保存优化器、此时对应的 epoch 等参数。这时就可以用 dict 包装起来。
  • f:输出路径

其中模型保存还有两种方式:

保存整个 Module

这种方法比较耗时,保存的文件大

torch.savev(net, path)

只保存模型的参数

推荐这种方法,运行比较快,保存的文件比较小

state_sict = net.state_dict()
torch.savev(state_sict, path)

下面是保存 LeNet 的例子。在网络初始化中,把权值都设置为 2020,然后保存模型。

import torch
import numpy as np
import torch.nn as nn
from common_tools import set_seed class LeNet2(nn.Module):
def __init__(self, classes):
super(LeNet2, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 6, 5),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(6, 16, 5),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.classifier = nn.Sequential(
nn.Linear(16*5*5, 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, classes)
) def forward(self, x):
x = self.features(x)
x = x.view(x.size()[0], -1)
x = self.classifier(x)
return x def initialize(self):
for p in self.parameters():
p.data.fill_(2020) net = LeNet2(classes=2019) # "训练"
print("训练前: ", net.features[0].weight[0, ...])
net.initialize()
print("训练后: ", net.features[0].weight[0, ...]) path_model = "./model.pkl"
path_state_dict = "./model_state_dict.pkl" # 保存整个模型
torch.save(net, path_model) # 保存模型参数
net_state_dict = net.state_dict()
torch.save(net_state_dict, path_state_dict)

运行完之后,文件夹中生成了``model.pklmodel_state_dict.pkl`,分别保存了整个网络和网络的参数

torch.load

torch.load(f, map_location=None, pickle_module, **pickle_load_args)

主要参数:

  • f:文件路径
  • map_location:指定存在 CPU 或者 GPU。

加载模型也有两种方式

加载整个 Module

如果保存的时候,保存的是整个模型,那么加载时就加载整个模型。这种方法不需要事先创建一个模型对象,也不用知道模型的结构,代码如下:

path_model = "./model.pkl"
net_load = torch.load(path_model) print(net_load)

输出如下:

LeNet2(
(features): Sequential(
(0): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU()
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(classifier): Sequential(
(0): Linear(in_features=400, out_features=120, bias=True)
(1): ReLU()
(2): Linear(in_features=120, out_features=84, bias=True)
(3): ReLU()
(4): Linear(in_features=84, out_features=2019, bias=True)
)
)

只加载模型的参数

如果保存的时候,保存的是模型的参数,那么加载时就参数。这种方法需要事先创建一个模型对象,再使用模型的load_state_dict()方法把参数加载到模型中,代码如下:

path_state_dict = "./model_state_dict.pkl"
state_dict_load = torch.load(path_state_dict)
net_new = LeNet2(classes=2019) print("加载前: ", net_new.features[0].weight[0, ...])
net_new.load_state_dict(state_dict_load)
print("加载后: ", net_new.features[0].weight[0, ...])

模型的断点续训练

在训练过程中,可能由于某种意外原因如断点等导致训练终止,这时需要重新开始训练。断点续练是在训练过程中每隔一定次数的 epoch 就保存模型的参数和优化器的参数,这样如果意外终止训练了,下次就可以重新加载最新的模型参数和优化器的参数,在这个基础上继续训练。

下面的代码中,每隔 5 个 epoch 就保存一次,保存的是一个 dict,包括模型参数、优化器的参数、epoch。然后在 epoch 大于 5 时,就break模拟训练意外终止。关键代码如下:

    if (epoch+1) % checkpoint_interval == 0:

        checkpoint = {"model_state_dict": net.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"epoch": epoch}
path_checkpoint = "./checkpoint_{}_epoch.pkl".format(epoch)
torch.save(checkpoint, path_checkpoint)

在 epoch 大于 5 时,就break模拟训练意外终止

    if epoch > 5:
print("训练意外中断...")
break

断点续训练的恢复代码如下:

path_checkpoint = "./checkpoint_4_epoch.pkl"
checkpoint = torch.load(path_checkpoint) net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] scheduler.last_epoch = start_epoch

需要注意的是,还要设置scheduler.last_epoch参数为保存的 epoch。模型训练的起始 epoch 也要修改为保存的 epoch。

参考资料

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

[PyTorch 学习笔记] 7.1 模型保存与加载的更多相关文章

  1. 驱动开发学习笔记. 0.07 Uboot链接地址 加载地址 和 链接脚本地址

    驱动开发学习笔记. 0.07 Uboot链接地址 加载地址 和 链接脚本地址 最近重新看了乾龙_Heron的<ARM 上电启动及 Uboot 代码分析>(下简称<代码分析>) ...

  2. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  3. tensorflow实现线性回归、以及模型保存与加载

    内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建 ...

  4. sklearn模型保存与加载

    sklearn模型保存与加载 sklearn模型的保存和加载API 线性回归的模型保存加载案例 保存模型 sklearn模型的保存和加载API from sklearn.externals impor ...

  5. TensorFlow构建卷积神经网络/模型保存与加载/正则化

    TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...

  6. Tensorflow模型保存与加载

    在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提 ...

  7. 转 tensorflow模型保存 与 加载

    使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获 ...

  8. TensorFlow的模型保存与加载

    import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir=&qu ...

  9. Entity Framework学习笔记(五)----Linq查询(2)---贪婪加载

    请注明转载地址:http://www.cnblogs.com/arhat 在上一章中,我们使用了Linq对Entity Framework进行了一个查询,但是通过学习我们却发现了懒加载给我来的性能上的 ...

随机推荐

  1. Mybatis-03-日志

    日志 1 日志工厂 如果一个数据库操作,出现了异常,需要排错,此时需要日志. 曾经:sout debug 现在:日志工厂 logImpl SLF4J/log4j(掌握)/log4j2 设置中可以设定日 ...

  2. 笔记:CSS基础

    一.CSS(层叠式样式表),决定页面怎么显示元素 1.引入方式: 行内样式,在当前标签元素中直接使用 style 的属性. 内嵌方式,在<head>中写样式: 外链式,<link&g ...

  3. 笔记:html基础

    一.HTML:超文本标记语言,是一种标签语言,不是编程语言,显示数据有双标签<body></body> 和单标签<img src=# / >, 标签大小写都可以 通 ...

  4. CSP-J2019 把8个同样的球放在同样的5个袋子里,允许有的袋子空着不放,问共有多少种不同的分法?

    把8个同样的球放在同样的5个袋子里,允许有的袋子空着不放,问共有多少种不同的分法? 提示:如果8个球都放在一个袋子里,无论是放哪个袋子,都只算同一种分法. 解析: 把问题合成,先思索5个袋子都不空的状 ...

  5. python setup.py install 报错【Project namexxx was given, but was not able to be found.】

    错误信息: [root@wangjq networking-mirror]# python setup.py install /usr/lib64/python2./distutils/dist.py ...

  6. BIGI行情http请求实时行情数据方式

    BIGI行情http请求实时行情数据方式 新浪财经文华财经并非实时行情数据源,所以获取的行情数据源也并非实时的.以下介绍的方法和新浪财经获取行情数据源的方法是一致的.需要实时行情数据源可以向BIGI行 ...

  7. 斗地主小游戏随机发牌PHP代码

    <?php header("Content-Type:text/html;charset=UTF-8"); $num=['A','2','3','4','5','6','7' ...

  8. 第3篇scrum冲刺(5.23)

    一.站立会议 1.照片 2.工作安排 成员 昨天已完成的工作 今天的工作安排 困难 陈芝敏  调用小程序接口获取用户微信登录权限,初始化  完成云开发配置,初始化数据库: 进度较慢,后面可能会有点困难 ...

  9. muduo源码解析10-logstream类

    FixedBuffer和logstream class FixedBuffer:noncopyable { }: class logstream:noncopyable { }: 先说一下包含的头文件 ...

  10. Android低功耗蓝牙总结

    这里只列出重点原理内容,更加细节的内容请阅读前面文章 首先要搞清楚一点,我们在 Android 中通过 SDK 获得的蓝牙广播包是经过底层的 SDK 给我们处理过的,是一个长度为 62 的字节数组.这 ...