LG P4449 & JZOJ 于神之怒
\(\text{Problem}\)
JZOJ上,求
\]
对 \(10^9+7\) 取模
\(n,m,k \le 5 \times 10^6\)
LG 上,是一个加强版,有 \(T(T\le 2 \times 10^3)\) 组数据
\(\text{Analysis}\)
依照套路的方法,我们可以推出
\]
若只有一组数据,那么
数论分块套数论分块 \(O(n^{\frac{3}{4}})\) 即可
加上线筛 \(O(n)\)
\(\text{Code}\)
#include<cstdio>
#include<iostream>
#define LL long long
#define re register
using namespace std;
const int N = 5e6, P = 1e9 + 7;
int n, m, k, totp, pr[N], vis[N + 5], sum[N + 5], pk[N + 5];
inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
}
inline void Euler()
{
vis[1] = sum[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, sum[i] = -1, pk[i] = fpow(i, k);
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (!(i % pr[j])) break;
sum[i * pr[j]] = -sum[i];
}
}
for(re int i = 1; i <= N; i++) sum[i] += sum[i - 1], pk[i] = (pk[i] + pk[i - 1]) % P;
}
inline int F(int n, int m)
{
LL res = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
res = (res + (LL)(sum[r] - sum[l - 1] + P) * (n / l) % P * (m / l)) % P;
}
return res;
}
int main()
{
scanf("%d%d%d", &n, &m, &k);
Euler();
LL ans = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
ans = (ans + (LL)(pk[r] - pk[l - 1] + P) * F(n / l, m / l) % P) % P;
}
printf("%lld\n", ans);
}
但LG上有多组数据,显然太慢了
同样套路地 \(T=pd\)
然后这个式子成了
\]
\(g(d)=d^k\) 显然是个积性函数,然后 \(G=g * mu\) 也是个积性函数
于是我们考虑线筛预处理 \(G\),然后数论分快做到单次 \(O(\sqrt n)\)
根据积性函数性质有 \(G(d) = \prod_{i=1} G({p_i}^{c_i})\)
然后我们思考什么样的数有贡献
\]
因为 \(\mu\) 的性质,我们知道,只有当 \(j=0\) 或 \(j=1\) 时有贡献,于是有
G(n)
&= \prod_{i=1} \mu(1) {p_i}^{c_i k} + \mu(p_i) {p_i}^{(c_i-1)k} \\
&= \prod_{i=1} {p_i}^{c_i k} - {p_i}^{(c_i-1)k} \\
&= \prod_{i=1} {p_i}^{(c_i-1) k}({p_i}^k-1)
\end{aligned}
\]
当 \(c_i = 1\) 的时候,就是质数的时候,\(G(p)=p^k-1\)
因为 \(G\) 是积性函数,所以 \(G(ab)=G(a)G(b)(\gcd(a,b)=1)\)
若 \(a,b\) 不互质,因为在线筛时枚举质数,所以 \(b\in \mathbb P\),设 \(a = a' p^c(\gcd(a,a')=1)\)
那么 \(G(ab)=G(a')G(p^{c+1})=G(a')p^{ck}(p^k-1)\)
线筛过程中 \(p^{(c-1)k}(p^k-1)\) 已计入 \(G(ab)\) 中,所以本次再乘上 \(p^k\) 即可
综上
\begin{cases}
G(a)G(b) & \gcd(a,b)=1 \\
G(a)b^k & \gcd(a,b)>1
\end{cases}
\]
线筛即可完美处理
\(\text{Code}\)
#include<cstdio>
#include<iostream>
#define LL long long
#define re register
using namespace std;
const int N = 5e6, P = 1e9 + 7;
int n, m, k, totp, pr[N], vis[N + 5], pk[N + 5];
LL sum[N + 5];
inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
}
inline void Euler()
{
vis[1] = sum[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, pk[i] = fpow(i, k), sum[i] = (pk[i] - 1 + P) % P;
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (i % pr[j]) sum[i * pr[j]] = sum[i] * sum[pr[j]] % P;
else{sum[i * pr[j]] = sum[i] * pk[pr[j]] % P; break;}
}
}
for(re int i = 1; i <= N; i++) sum[i] = (sum[i] + sum[i - 1]) % P;
}
int main()
{
int T; scanf("%d%d", &T, &k);
Euler();
for(; T; T--)
{
scanf("%d%d", &n, &m);
LL ans = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
ans = (ans + (sum[r] - sum[l - 1] + P) * (n / l) % P * (m / l)) % P;
}
printf("%lld\n", ans);
}
}
LG P4449 & JZOJ 于神之怒的更多相关文章
- Solution -「洛谷 P4449」于神之怒加强版
\(\mathcal{Description}\) Link. 给定 \(k\) 和 \(T\) 组 \(n,m\),对于每组,求 \[\sum_{i=1}^n\sum_{j=1}^m\ope ...
- P4449 于神之怒加强版 (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- P4449 于神之怒加强版
\(\color{#0066ff}{ 题目描述 }\) 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\) 对1000000007 ...
- 并不对劲的p4449于神之怒加强版
题目大意 给定\(t,k(t\leq2000,k\leq5*10^6)\) \(t\)组询问,每组给出\(n,m(n,m\leq5*10^6)\)求$\sum_{i=1}^n \sum_{j=1}^m ...
- 题解 P4449 于神之怒加强版
这道题算是我完完整整推的第一道题,写篇题解纪念一下. 题目 废话不多说,直接开始推式子(给新手准备,过程较详细,大佬可自行跳步),以下过程中均假设 \((n\le m)\),\([d=1]\) 类似于 ...
- [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)
题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...
- Linux下安装性能测试负载机LG
系统:CentOS release 6.6 (Final) x86_64 安装包: 1.LRLG_00031.iso [Load Generator Standalone (Linux 64-bit ...
- bootstrap 之 xs,sm,md,lg && 主要颜色
mobile – xs ( <768px ) tablet – sm ( 768~991px ) desktop – md ( 992~1170px ) large desktop – lg ( ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
随机推荐
- tomcat 随windows启动
有时候服务器会突然断电,维护管理员只会帮我们启动服务器,但是不会不会帮我们启动Tomcat. 1.进入tomcat的bin文件夹,找到startup.bat,右键生成快捷方式到桌面. 2.点击桌面左下 ...
- Servlet面试题合集
servlet的生命周期 在创建servlet对象时,通过调用.init()方法进行初始化 通过service()方法来接收客户端的请求.根据请求方式的不同转发给对应的doGet()或doPost() ...
- 深入浅出学习透析 Nginx 服务器的基本原理和配置指南「运维操作实战篇」
Nginx前提回顾 Nginx 是一个高性能的 Web 和反向代理服务器, 它具有有很多非常优越的特性: Web服务器:相比 Apache,Nginx 使用更少的资源,支持更多的并发连接,体现更高的效 ...
- Python matplotlib 学习——建立画布和坐标系
#导入包import matplotlib.pyplot as plt #让图表在jupyter展示出来%matplotlib inline#解决中文乱码问题plt.rcParams["fo ...
- TabControl控件的简单使用-添加tab
1.首先创建一个MFC对话框框架,在对话框资源上从工具箱中添加上一个Tab Control 控件,根据需要修改一下属性,然后右击控件,为这个控件添加一个变量,将此控件跟一个CTabCtrl类变量绑定在 ...
- LeetCode HOT 100:搜索旋转排序数组
题目:33. 搜索旋转排序数组 题目描述: 一个整数数组,数组每个值都不相同,且该整数数组是一个被旋转过的数组.被旋转过的数组是指,由一个递增的数组,从某一个下标开始往后的元素,移到最开头.举个例子: ...
- JavaScript:对象:如何创建对象?
JS是面向对象的语言,除开基础数据类型,其他所有的数据类型都是对象,包括函数. 如何去理解对象,什么是对象呢? 举个例子,比如我们将日常生活中见到的猫这种动物,抽象成一个类Cat,这里不去谈类是什么概 ...
- 12、HSSFWorkbook实现多张sheet导出
转载自 一.封装一个通用的装载数据的实体类: import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsCon ...
- openEuler 部署Kubernetes(K8s)集群
前言 由于工作原因需要使用 openEuler,openEuler官方文档部署K8s集群比较复杂,并且网上相关资料较少,本文是通过实践与测试整理的 openEuler 22.03 部署 Kuberne ...
- Kali Win-KeX SL
内容: 概述 先决条件 用法 开始 声音支持 多屏支持 停止 概述 无缝模式下的 Win-KeX 将在 Windows 桌面的屏幕顶部启动 Kali Linux 面板. 通过面板启动的应用程序将与 M ...