视觉十四讲:第十二讲_RGB-D稠密点云
1.点云地图
所谓点云,就是由一组离散的点表示的地图,最基本的点包含x,y,z三维坐标,也可以带有r,g,b的彩色信息.
#include <iostream>
#include <fstream>
using namespace std;
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <Eigen/Geometry>
#include <boost/format.hpp> // for formating strings
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/statistical_outlier_removal.h>
int main(int argc, char **argv)
{
vector<cv::Mat> colorImgs, depthImgs; // 彩色图和深度图
vector<Eigen::Isometry3d> poses; // 相机位姿
ifstream fin("../data/pose.txt");
if (!fin) {
cerr << "cannot find pose file" << endl;
return 1;
}
for (int i = 0; i < 5; i++) {
boost::format fmt("../data/%s/%d.%s"); //图像文件格式
colorImgs.push_back(cv::imread((fmt % "color" % (i + 1) % "png").str()));
depthImgs.push_back(cv::imread((fmt % "depth" % (i + 1) % "png").str(), -1)); // 使用-1读取原始图像
double data[7] = {0};
for (int i = 0; i < 7; i++) {
fin >> data[i];
}
Eigen::Quaterniond q(data[6], data[3], data[4], data[5]);
Eigen::Isometry3d T(q);
T.pretranslate(Eigen::Vector3d(data[0], data[1], data[2]));
poses.push_back(T);
}
// 计算点云并拼接
// 相机内参
double cx = 319.5;
double cy = 239.5;
double fx = 481.2;
double fy = -480.0;
double depthScale = 5000.0;
cout << "正在将图像转换为点云..." << endl;
// 定义点云使用的格式:这里用的是XYZRGB
typedef pcl::PointXYZRGB PointT;
typedef pcl::PointCloud<PointT> PointCloud;
// 新建一个点云
PointCloud::Ptr pointCloud(new PointCloud);
for (int i = 0; i < 5; i++) {
PointCloud::Ptr current(new PointCloud);
cout << "转换图像中: " << i + 1 << endl;
cv::Mat color = colorImgs[i];
cv::Mat depth = depthImgs[i];
Eigen::Isometry3d T = poses[i];
for (int v = 0; v < color.rows; v++)
for (int u = 0; u < color.cols; u++) {
unsigned int d = depth.ptr<unsigned short>(v)[u]; // 深度值
if (d == 0) continue; // 为0表示没有测量到
Eigen::Vector3d point;
point[2] = double(d) / depthScale;
point[0] = (u - cx) * point[2] / fx;
point[1] = (v - cy) * point[2] / fy;
Eigen::Vector3d pointWorld = T * point;
PointT p;
p.x = pointWorld[0];
p.y = pointWorld[1];
p.z = pointWorld[2];
p.b = color.data[v * color.step + u * color.channels()];
p.g = color.data[v * color.step + u * color.channels() + 1];
p.r = color.data[v * color.step + u * color.channels() + 2];
current->points.push_back(p);
}
// depth filter and statistical removal
PointCloud::Ptr tmp(new PointCloud);
pcl::StatisticalOutlierRemoval<PointT> statistical_filter;
statistical_filter.setMeanK(50);
statistical_filter.setStddevMulThresh(1.0);
statistical_filter.setInputCloud(current);
statistical_filter.filter(*tmp);
(*pointCloud) += *tmp; //没有+只建一点图,不知道为什么
}
pointCloud->is_dense = false;
cout << "点云共有" << pointCloud->size() << "个点." << endl;
// voxel filter
pcl::VoxelGrid<PointT> voxel_filter;
double resolution = 0.03;
voxel_filter.setLeafSize(resolution, resolution, resolution); // resolution
PointCloud::Ptr tmp(new PointCloud);
voxel_filter.setInputCloud(pointCloud);
voxel_filter.filter(*tmp);
tmp->swap(*pointCloud);
cout << "滤波之后,点云共有" << pointCloud->size() << "个点." << endl;
pcl::io::savePCDFileBinary("map.pcd", *pointCloud);
return 0;
}
程序主要使用PCL将3D点重建为点云,过程采用统计滤波器去掉了孤立点,然后利用体素网络滤波器进行降采样.
该点云地图的问题:
- 没有存储特征点的信息,无法用于基于特征点的定位方法.
- 没有对该点云进行优化,所以精度不够
- 无法直接用于导航和避障,不过可以将该点云进行加工,得到适合导航和避障的地图
视觉十四讲:第十二讲_RGB-D稠密点云的更多相关文章
- Android项目实战(四十四):Zxing二维码切换横屏扫描
原文:Android项目实战(四十四):Zxing二维码切换横屏扫描 Demo链接 默认是竖屏扫描,但是当我们在清单文件中配置横屏显示的时候: <activity android:name=&q ...
- Linux命令(二十四) 磁盘管理命令(二) mkfs,mount
一.格式化文件系统 mkfs 当完成硬盘分区以后要进行硬盘的格式化,mkfs系列对应的命令用于将硬盘格式化为指定格式的文件系统.mkfs 本身并不执行建立文件系统的工作,而是去调用相关的程序来执行.例 ...
- ios基础篇(十四)——UITableView(二)属性及基本用法
上一篇说了UITableView的重用机制,让我们对UITableView有了简单了解,下面说说UITableView的属性及常见方法. 一.属性 1.frame:设置控件的尺寸和大小 2.backg ...
- SharpGL学习笔记(十四) 材质:十二个材质球
材质颜色 OpenGL用材料对光的红.绿.蓝三原色的反射率来近似定义材料的颜色.象光源一样,材料颜色也分成环境.漫反射和镜面反射成分,它们决定了材料对环境光.漫反射光和镜面反射光的反射程度.在进行光照 ...
- 大数据入门第二十四天——SparkStreaming(二)与flume、kafka整合
前一篇中数据源采用的是从一个socket中拿数据,有点属于“旁门左道”,正经的是从kafka等消息队列中拿数据! 主要支持的source,由官网得知如下: 获取数据的形式包括推送push和拉取pull ...
- Android笔记三十四.Service综合实例二
综合实例2:client訪问远程Service服务 实现:通过一个button来获取远程Service的状态,并显示在两个文本框中. 思路:如果A应用须要与B应用进行通信,调用B应用中的getName ...
- Python学习日记(三十四) Mysql数据库篇 二
外键(Foreign Key) 如果今天有一张表上面有很多职务的信息 我们可以通过使用外键的方式去将两张表产生关联 这样的好处能够节省空间,比方说你今天的职务名称很长,在一张表中就要重复的去写这个职务 ...
- 第十四篇 -- CPU学习二——此部分重点在AMD CPU
一.CPU的一些英文简写或解释 Definitions: ACPI--Advanced Configuration and Power Interface APP--Adjusted Peak Per ...
- Java开发学习(三十四)----Maven私服(二)本地仓库访问私服配置与私服资源上传下载
一.本地仓库访问私服配置 我们通过IDEA将开发的模块上传到私服,中间是要经过本地Maven的 本地Maven需要知道私服的访问地址以及私服访问的用户名和密码 私服中的仓库很多,Maven最终要把资源 ...
- 洛谷P4887 第十四分块(前体)(二次离线莫队)
题面 传送门 题解 lxl大毒瘤 我们考虑莫队,在移动端点的时候相当于我们需要快速计算一个区间内和当前数字异或和中\(1\)的个数为\(k\)的数有几个,而这个显然是可以差分的,也就是\([l,r]\ ...
随机推荐
- ArcObjects SDK开发 003 宏观角度看ArcObjects SDK
1.为什么要宏观上看ArcObjects SDK ArcObjects SDK库是一个非常庞大复杂COM组件集合,ArcGIS10.0有1000多个枚举.90多个结构体.5000多个接口以及4000多 ...
- JavaScript入门③-函数(2)原理{深入}执行上下文
00.头痛的JS闭包.词法作用域? 被JavaScript的闭包.上下文.嵌套函数.this搞得很头痛,这语言设计的,感觉比较混乱,先勉强理解总结一下. 为什么有闭包这么个东西?闭包包的是什么? 什么 ...
- [百度营]AI studio用法提醒(自用)
持久化安装 需要设置持久化路径: !mkdir /home/aistudio/external-libraries !pip install beautifulsoup4 -t /home/aistu ...
- 【ubuntu】解决无法打开终端:gnome-terminal找不到路径问题
因为之前安装pyton的时候把电脑本身的python路径给改了,所以出现了这样的问题:图形化启动系统自带终端时,报错找不到gnome-terminal的路径 后来找到解决方法: 先桌面右键-终端(E) ...
- ORM数据增删改查 django请求生命周期 django路由层 反向解析
目录 可视化界面之数据增删改查 补充 1.建表 2.数据展示功能 3.数据添加功能 4.数据编辑功能 5.数据删除功能 django请求生命周期流程图 crsf wsgirel 与 uwsgi ngi ...
- 4、PageHelper分页查询
1.MyBatis的分页方式: 逻辑分页与物理分页 1.逻辑分页:使用MyBatis自带的RowBounds进行分页,是一次性查询很多数据,然后再在结果中检索分页的数据.这样做弊端是需要消耗大量的内存 ...
- 【转载】SQL 2012以上版本分页查询更简单
2012以上版本分页查询更简单 注意:以下都是先执行排序,再取行数据 select* from t_workers order by worker_id desc offset 3 rows -- ...
- GitHub车牌检测识别项目调研
一,EasyOCR 1.1,仓库介绍 1.2,使用记录 二,HyperLPR 2.1,HyperLPR 概述 2.3,使用记录 2.3,使用建议 三,simple-car-plate-recognit ...
- [OpenCV实战]46 在OpenCV下应用图像强度变换实现图像对比度均衡
本文主要介绍基于图像强度变换算法来实现图像对比度均衡.通过图像对比度均衡能够抑制图像中的无效信息,使图像转换为更符合计算机或人处理分析的形式,以提高图像的视觉价值和使用价值.本文主要通过OpenCV ...
- 一文详解RocketMQ的存储模型
摘要:RocketMQ 优异的性能表现,必然绕不开其优秀的存储模型. 本文分享自华为云社区<终于弄明白了 RocketMQ 的存储模型>,作者:勇哥java实战分享. RocketMQ 优 ...