决策树3:基尼指数--Gini index(CART)


既能做分类,又能做回归。
分类:基尼值作为节点分类依据。
回归:最小方差作为节点的依据。





节点越不纯,基尼值越大,熵值越大
pi表示在信息熵部分中有介绍,如下图中介绍



方差越小越好。





选择最小的那个0.3






代码:
#整个c4.5决策树的所有算法:
import numpy as np
import operator def creatDataSet():
"""
outlook-> 0:sunny | 1:overcast | 2:rain
temperature-> 0:hot | 1:mild | 2:cool
humidity-> 0:high | 1:normal
windy-> 0:false | 1:true
"""
dataSet = np.array([[0, 0, 0, 0, 'N'],
[0, 0, 0, 1, 'N'],
[1, 0, 0, 0, 'Y'],
[2, 1, 0, 0, 'Y'],
[2, 2, 1, 0, 'Y'],
[2, 2, 1, 1, 'N'],
[1, 2, 1, 1, 'Y']])
labels = np.array(['outlook', 'temperature', 'humidity', 'windy'])
return dataSet, labels def createTestSet():
"""
outlook-> 0:sunny | 1:overcast | 2:rain
temperature-> 0:hot | 1:mild | 2:cool
humidity-> 0:high | 1:normal
windy-> 0:false | 1:true
"""
testSet = np.array([[0, 1, 0, 0],
[0, 2, 1, 0],
[2, 1, 1, 0],
[0, 1, 1, 1],
[1, 1, 0, 1],
[1, 0, 1, 0],
[2, 1, 0, 1]])
return testSet def dataset_entropy(dataset):
"""
计算数据集的信息熵
"""
classLabel=dataset[:,-1]
labelCount={}
for i in range(classLabel.size):
label=classLabel[i]
labelCount[label]=labelCount.get(label,0)+1 #将所有的类别都计算出来了
#熵值(第一步)
cnt=0
for k,v in labelCount.items():
cnt += -v/classLabel.size*np.log2(v/classLabel.size) return cnt #接下来切分,然后算最优属性
def splitDataSet(dataset,featureIndex,value):
subdataset=[]
#迭代所有的样本
for example in dataset:
if example[featureIndex]==value:
subdataset.append(example)
return np.delete(subdataset,featureIndex,axis=1) def classLabelPi(dataset):
#多叉树
classLabel=dataset[:,-1]
labelCount={}
for i in range(classLabel.size):
label=classLabel[i]
labelCount[label]=labelCount.get(label,0)+1
valueList=list(labelCount.values())
sum=np.sum(valueList)
pi=0
for i in valueList:
pi+=(i/sum)**2
return pi def chooseBestFeature(dataset,labels):
"""
选择最优特征,但是特征是不包括名称的。
如何选择最优特征:增益率最小
"""
#特征的个数
featureNum=labels.size
baseEntropy=dataset_entropy(dataset)
#设置最大增益值
maxRatio,bestFeatureIndex=0,None
#样本总数
n=dataset.shape[0]
#最小基尼值
minGini=1
for i in range(featureNum):
#指定特征的条件熵
featureEntropy=0
gini=0
#返回所有子集
featureList=dataset[:,i]
featureValues=set(featureList)
for value in featureValues:
subDataSet=splitDataSet(dataset,i,value)
pi=subDataSet.shape[0]/n
gini+=pi*(1-classLabelPi(subDataSet))
if minGini > gini:
minGini=gini
bestFeatureIndex=i
return bestFeatureIndex #最佳增益 def mayorClass(classList):
labelCount={}
for i in range(classList.size):
label=classList[i]
labelCount[label]=labelCount.get(label,0)+1
sortedLabel=sorted(labelCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedLabel[0][0] def createTree(dataset,labels):
"""
参考hunt算法那张图片
"""
classList=dataset[:,-1]
if len(set(dataset[:,-1]))==1:
return dataset[:,-1][0] #返回类别
if labels.size==0 or len(dataset[0])==1: #条件熵最少的一定是类别最多的
#条件熵算不下去的时候,
return mayorClass(classList)
bestFeatureIndex=chooseBestFeature(dataset,labels)
bestFeature=labels[bestFeatureIndex]
dtree={bestFeature:{}} #用代码表示这棵树
featureList=dataset[:,bestFeatureIndex]
featureValues=set(featureList)
for value in featureValues:
subdataset=splitDataSet(dataset,bestFeatureIndex,value)
sublabels=np.delete(labels,bestFeatureIndex)
dtree[bestFeature][value]=createTree(subdataset,sublabels) #将原始的labels干掉一列
return dtree def predict(tree,labels,testData):
#分类,预测
rootName=list(tree.keys())[0]
rootValue=tree[rootName]
featureIndex =list(labels).index(rootName)
classLabel=None
for key in rootValue.keys():
if testData[featureIndex]==int(key):
if type(rootValue[key]).__name__=="dict":
classLabel=predict(rootValue[key],labels,testData) #递归
else:
classLabel=rootValue[key]
return classLabel def predictAll(tree,labels,testSet):
classLabels=[]
for i in testSet:
classLabels.append(predict(tree,labels,i))
return classLabels if __name__ == "__main__":
dataset,labels=creatDataSet()
# print(dataset_entropy(dataset)
# s=splitDataSet(dataset,0)
# for item in s:
# print(item)
tree=createTree(dataset,labels)
testSet=createTestSet()
print(predictAll(tree,labels,testSet))
····························································
输出:
['N', 'N', 'Y', 'N', 'Y', 'Y', 'N']




决策树3:基尼指数--Gini index(CART)的更多相关文章
- Python实现CART(基尼指数)
Python实现CART(基尼指数) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 st=>start ...
- B-经济学-基尼指数
目录 基尼指数 一.基尼指数简介 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/ni ...
- (二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树
CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现——“西瓜树” 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动 ...
- 决策树(上)-ID3、C4.5、CART
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解决策树): 1.https://zhuanlan.zhihu.com/p/85731206 2.https://zhuanla ...
- 【机器学习速成宝典】模型篇06决策树【ID3、C4.5、CART】(Python版)
目录 什么是决策树(Decision Tree) 特征选择 使用ID3算法生成决策树 使用C4.5算法生成决策树 使用CART算法生成决策树 预剪枝和后剪枝 应用:遇到连续与缺失值怎么办? 多变量决策 ...
- 机器学习总结(八)决策树ID3,C4.5算法,CART算法
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then ...
- 决策树之ID3,C4.5及CART
决策树的基本认识 决策树学习是应用最广的归纳推理算法之一,是一种逼近离散值函数的方法,年,香农引入了信息熵,将其定义为离散随机事件出现的概率,一个系统越是有序,信息熵就越低,反之一个系统越是混乱,它 ...
- Theoretical comparison between the Gini Index and Information Gain criteria
Knowledge Discovery in Databases (KDD) is an active and important research area with the promise for ...
- 多分类度量gini index
第一份工作时, 基于 gini index 写了一份决策树代码叫ctree, 用于广告推荐. 今天想起来, 好像应该有开源的其他方法了. 参考 https://www.cnblogs.com/mlhy ...
随机推荐
- 【译】在 ASP.NET 和 ASP.NET Core 之间共享代码
原文 | Ken 翻译 | 郑子铭 随着 .NET 6 的发布,使用 ASP.NET Core 可以获得更多好处.但是将现有代码迁移到 ASP.NET Core 通常听起来像是一项巨大的投资.今天我们 ...
- Qt:QDir
0.说明 QDir提供了访问目录及目录下内容的类. QDir既可以用于访问文件系统,也可以用于访问Qt 资源系统(Qt's resource system.). Qt用 "/" 作 ...
- Python:Scrapy(四) 命令行相关
学习自Scrapy 2.4.1 documentation 这一部分是对官方文档的学习,主要是理解翻译,来对之前的应用部分进行详细的理论补充. 1.保存爬取到的要素的方式: ①运行scrapy指令时, ...
- 快速构建 React 开发环境
使用 create-react-app 快速构建 React 开发环境 create-react-app 是来自于 Facebook,通过该命令我们无需配置就能快速构建 React 开发环境. cre ...
- JavaDoc开发文档
JavaDoc是一种将注释生成HTML的技术,生成的HTML文档类似于Java的API,易读且清晰明了. javadoc是Sun公司提供的一个技术,它从程序源代码中抽取类.方法.成员等注释形成一个和源 ...
- Dubbo服务框架和spring-cloud架构的优缺点
Dubbo一.dubbo简介 Dubbo是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能的RPC实现服务的输出和输入功能,可以和Spring框架无缝集成. Dubbo是一款高性能.轻 ...
- Mysql基础语法-建库-建表(增、删、改、查、表关联及子查询)
前言:MySQL是一个数据库管理系统,也是一个关系数据库.它是由Oracle支持的开源软件,MySQL可以在各种平台上运行UNIX,Linux,Windows等.可以将其安装在服务器甚至桌面系统上. ...
- lavarel 框架 搜索后分页
................框架控制器 public function list(Request $request){ $word=$request->input('word'); $arr ...
- laravel 7 H-ui模板ajax批删
1,HTML页面写一个button按钮 <a href="javascript:;" onclick="deleteAll()" class=" ...
- PHP 的网站主要攻击方式有哪些?
1.命令注入(Command Injection)2.eval 注入(Eval Injection)3.客户端脚本攻击(Script Insertion)4.跨网站脚本攻击(Cross Site Sc ...