Docker容器中使用GPU
背景
容器封装了应用程序的依赖项,以提供可重复和可靠的应用程序和服务执行,而无需整个虚拟机的开销。如果您曾经花了一天的时间为一个科学或 深度学习 应用程序提供一个包含大量软件包的服务器,或者已经花费数周的时间来确保您的应用程序可以在多个 linux 环境中构建和部署,那么 Docker 容器非常值得您花费时间。

安装添加docker源
[root@localhost ~]# sudo yum-config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
Loaded plugins: fastestmirror, langpacks
adding repo from: https://download.docker.com/linux/centos/docker-ce.repo
grabbing file https://download.docker.com/linux/centos/docker-ce.repo to /etc/yum.repos.d/docker-ce.repo
repo saved to /etc/yum.repos.d/docker-ce.repo
[root@localhost ~]#
[root@localhost ~]# cat /etc/yum.repos.d/docker-ce.repo
[docker-ce-stable]
name=Docker CE Stable - $basearch
baseurl=https://download.docker.com/linux/centos/$releasever/$basearch/stable
enabled=1
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-stable-debuginfo]
name=Docker CE Stable - Debuginfo $basearch
baseurl=https://download.docker.com/linux/centos/$releasever/debug-$basearch/stable
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-stable-source]
name=Docker CE Stable - Sources
baseurl=https://download.docker.com/linux/centos/$releasever/source/stable
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-test]
name=Docker CE Test - $basearch
baseurl=https://download.docker.com/linux/centos/$releasever/$basearch/test
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-test-debuginfo]
name=Docker CE Test - Debuginfo $basearch
baseurl=https://download.docker.com/linux/centos/$releasever/debug-$basearch/test
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-test-source]
name=Docker CE Test - Sources
baseurl=https://download.docker.com/linux/centos/$releasever/source/test
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-nightly]
name=Docker CE Nightly - $basearch
baseurl=https://download.docker.com/linux/centos/$releasever/$basearch/nightly
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-nightly-debuginfo]
name=Docker CE Nightly - Debuginfo $basearch
baseurl=https://download.docker.com/linux/centos/$releasever/debug-$basearch/nightly
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[docker-ce-nightly-source]
name=Docker CE Nightly - Sources
baseurl=https://download.docker.com/linux/centos/$releasever/source/nightly
enabled=0
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
[root@localhost ~]#
下载安装包
[root@localhost ~]# cd docker
[root@localhost docker]#
[root@localhost docker]# repotrack docker-ce
安装docker 并设置开机自启
[root@localhost docker]# yum install ./*
[root@localhost docker]# systemctl start docker
[root@localhost docker]#
[root@localhost docker]# systemctl enable docker
Created symlink from /etc/systemd/system/multi-user.target.wants/docker.service to /usr/lib/systemd/system/docker.service.
[root@localhost docker]#
配置nvidia-docker的源
[root@localhost docker]# distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
> && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo
[root@localhost docker]# cat /etc/yum.repos.d/nvidia-docker.repo
[libnvidia-container]
name=libnvidia-container
baseurl=https://nvidia.github.io/libnvidia-container/stable/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
[libnvidia-container-experimental]
name=libnvidia-container-experimental
baseurl=https://nvidia.github.io/libnvidia-container/experimental/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=0
gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
[nvidia-container-runtime]
name=nvidia-container-runtime
baseurl=https://nvidia.github.io/nvidia-container-runtime/stable/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/nvidia-container-runtime/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
[nvidia-container-runtime-experimental]
name=nvidia-container-runtime-experimental
baseurl=https://nvidia.github.io/nvidia-container-runtime/experimental/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=0
gpgkey=https://nvidia.github.io/nvidia-container-runtime/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
[nvidia-docker]
name=nvidia-docker
baseurl=https://nvidia.github.io/nvidia-docker/centos7/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://nvidia.github.io/nvidia-docker/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
[root@localhost docker]#
安装下载nvidia-docker
[root@localhost ~]# mkdir nvidia-docker2
[root@localhost ~]# cd nvidia-docker2
[root@localhost nvidia-docker2]# yum update -y
[root@localhost nvidia-docker2]# repotrack nvidia-docker2
[root@localhost nvidia-docker2]# yum install ./*
[root@localhost ~]# mkdir nvidia-container-toolkit
[root@localhost ~]# cd nvidia-container-toolkit
[root@localhost nvidia-container-toolkit]# repotrack nvidia-container-toolkit
[root@ai-rd nvidia-container-toolkit]# yum install ./*
下载镜像,并保存
[root@localhost ~]# docker pull nvidia/cuda:11.0-base
11.0-base: Pulling from nvidia/cuda
54ee1f796a1e: Pull complete
f7bfea53ad12: Pull complete
46d371e02073: Pull complete
b66c17bbf772: Pull complete
3642f1a6dfb3: Pull complete
e5ce55b8b4b9: Pull complete
155bc0332b0a: Pull complete
Digest: sha256:774ca3d612de15213102c2dbbba55df44dc5cf9870ca2be6c6e9c627fa63d67a
Status: Downloaded newer image for nvidia/cuda:11.0-base
docker.io/nvidia/cuda:11.0-base
[root@localhost ~]#
[root@localhost ~]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nvidia/cuda 11.0-base 2ec708416bb8 15 months ago 122MB
[root@localhost ~]#
[root@localhost ~]# docker save -o cuda-11.0.tar nvidia/cuda:11.0-base
[root@localhost ~]#
[root@localhost ~]# ls cuda-11.0.tar
cuda-11.0.tar
[root@localhost ~]#
在要测试的服务器上导入镜像
[root@ai-rd cby]# docker load -i cuda-11.0.tar
2ce3c188c38d: Loading layer [==================================================>] 75.23MB/75.23MB
ad44aa179b33: Loading layer [==================================================>] 1.011MB/1.011MB
35a91a75d24b: Loading layer [==================================================>] 15.36kB/15.36kB
a4399aeb9a0e: Loading layer [==================================================>] 3.072kB/3.072kB
fa39d0e9f3dc: Loading layer [==================================================>] 18.84MB/18.84MB
232fb43df6ad: Loading layer [==================================================>] 30.08MB/30.08MB
0da51e35db05: Loading layer [==================================================>] 22.53kB/22.53kB
Loaded image: nvidia/cuda:11.0-base
[root@ai-rd cby]#
[root@ai-rd cby]# docker images | grep cuda
nvidia/cuda 11.0-base 2ec708416bb8 15 months ago 122MB
[root@ai-rd cby]#
安装升级内核
[root@ai-rd cby]# yum install kernel-headers
[root@ai-rd cby]# yum install kernel-devel
[root@ai-rd cby]# yum update kernel*
禁用模块,并升级boot
[root@ai-rd cby]# vim /etc/modprobe.d/blacklist-nouveau.conf
[root@ai-rd cby]# cat /etc/modprobe.d/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
[root@ai-rd cby]#
[root@ai-rd cby]# mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
[root@ai-rd cby]# sudo dracut -v /boot/initramfs-$(uname -r).img $(uname -r)
下载驱动并安装
[root@localhost ~]# wget https://cn.download.nvidia.cn/tesla/450.156.00/NVIDIA-Linux-x86_64-450.156.00.run
[root@ai-rd cby]# chmod +x NVIDIA-Linux-x86_64-450.156.00.run
[root@ai-rd cby]# ./NVIDIA-Linux-x86_64-450.156.00.run
配置docker
[root@ai-rd ~]# vim /etc/docker/daemon.json
[root@ai-rd ~]# cat /etc/docker/daemon.json
{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
}
}
[root@ai-rd ~]#
[root@ai-rd ~]# systemctl daemon-reload
[root@ai-rd ~]#
[root@ai-rd ~]#
[root@ai-rd ~]#
[root@ai-rd ~]# systemctl restart docker
[root@ai-rd ~]#
测试docker中的调用情况
[root@ai-rd ~]#
[root@ai-rd ~]# sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
Tue Nov 23 06:03:04 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.156.00 Driver Version: 450.156.00 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:86:00.0 Off | 0 |
| N/A 90C P0 34W / 70W | 0MiB / 15109MiB | 6% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
[root@ai-rd ~]#

https://blog.csdn.net/qq_33921750
https://my.oschina.net/u/3981543
https://www.zhihu.com/people/chen-bu-yun-2
https://segmentfault.com/u/hppyvyv6/articles
https://juejin.cn/user/3315782802482007
https://space.bilibili.com/352476552/article
https://cloud.tencent.com/developer/column/93230
知乎、CSDN、开源中国、思否、掘金、哔哩哔哩、腾讯云
Docker容器中使用GPU的更多相关文章
- 在Docker容器中搭建MXNet/Gluon开发环境
在这篇文章中没有直接使用MXNet官方提供的docker image,而是从一个干净的nvidia/cuda镜像开始,一步一步部署mxnet需要的相关软件环境,这样做是为了更加细致的了解mxnet的运 ...
- Kubernetes 教程:在 Containerd 容器中使用 GPU
原文链接:https://fuckcloudnative.io/posts/add-nvidia-gpu-support-to-k8s-with-containerd/ 前两天闹得沸沸扬扬的事件不知道 ...
- Docker容器中运行ASP.NET Core
在Linux和Windows的Docker容器中运行ASP.NET Core 译者序:其实过去这周我都在研究这方面的内容,结果周末有事没有来得及总结为文章,Scott Hanselman就捷足先登了. ...
- 在 docker 容器中捕获信号
我们可能都使用过 docker stop 命令来停止正在运行的容器,有时可能会使用 docker kill 命令强行关闭容器或者把某个信号传递给容器中的进程.这些操作的本质都是通过从主机向容器发送信号 ...
- Docker容器中开始.NETCore之路
一.引言 开始写这篇博客前,已经尝试练习过好多次Docker环境安装,.Net Core环境安装了,在这里替腾讯云做一个推广,假如我们想学习.练手.net core 或是Docker却苦于没有开发环境 ...
- 隔离 docker 容器中的用户
笔者在前文<理解 docker 容器中的 uid 和 gid>介绍了 docker 容器中的用户与宿主机上用户的关系,得出的结论是:docker 默认没有隔离宿主机用户和容器中的用户.如果 ...
- Docker容器中开始.Net Core之路
开始写这篇博客前,已经尝试练习过好多次Docker环境安装,.Net Core环境安装了,在这里替腾讯云做一个推广,假如我们想学习.练手.net core 或是Docker却苦于没有开发环境,服务器也 ...
- Docker容器中找不到vim命令
docker容器中,有的并未安装vi和vim,输入命令vim,会提示vim: command not found(如下图).此时我们就要安装vi命令 执行命令:apt-get update apt-g ...
- docker容器中Postgresql 数据库备份
查看运行的容器: docker ps 进入目标容器: docker exec -u root -it 容器名 /bin/bash docker 中,以root用户,创建备份目录,直接执行如下命令, p ...
- .NetCore下使用IdentityServer4 & JwtBearer认证授权在CentOS Docker容器中运行遇到的坑及填坑
今天我把WebAPI部署到CentOS Docker容器中运行,发现原有在Windows下允许的JWTBearer配置出现了问题 在Window下我一直使用这个配置,没有问题 services.Add ...
随机推荐
- Verilog教程
1. 简介 当用 Verilog 设计完成数字模块后进行仿真时,需要在外部添加激励,激励文件叫 testbench. Verilog 的主要特性: 可采用 3 种不同的方式进行设计建模:行为级描述-- ...
- 如何修改被编译后DLL文件 (转发)
我们平时在工作中经常会遇到一些已经被编译后的DLL,而且更加麻烦是没有源代码可以进行修改,只能针对这个DLL的文件进行修改才能得到我们想要的结果:本文将通过一个实例来演示如果完成一个简单的修改;我们将 ...
- 解决VSCode无法显示Unity代码提示和源代码
1,先删除项目目录下的配置文件,也可以理解为除文件夹外的其他文件 2,先把vscode选中,下拉框中没有vscode的找到文件就可以导进来再选中.然后红框里的不要勾选,因为我是这么做的,你也可以试着勾 ...
- 弹框tabel树
<template> <div> <el-dialog :title="title" :visible.sync="dialogVisibl ...
- SqlServer 不能收缩 ID 为 %s 的数据库中 ID 为 %s 的文件,因为它正由其他进程收缩或为空。
SQLServer数据库通常都不建议进行SHRINKFILE操作,因为SHRINKFILE不当会造成一定的性能问题. 但是当进行了某些操作(例如某个超大的日志类型表转成分区表切换了数据文件),数据库某 ...
- 各种系统名词解释:MIS 、ERP、CRM、OA
MIS :信息系统.针对企业使用的软件,都可以叫做MIS系统. (管理信息系统--Management Information System)系统 ,是一个由人.计算机及其他外围设备等组成的能进行信息 ...
- vue中小写数字转大写汉字
numTocoggle(money){ //汉字的数字 var cnNums = new Array('零', '壹', '贰', '叁', '肆', '伍', '陆', '柒', '捌', '玖') ...
- 《Unix/Linux系统编程》第十二周学习笔记
<Unix/Linux系统编程>第十二周学习笔记 MySQL数据库简介 MySQL是一个关系型数据库管理系统,是最流行的关系型数据库管理系统之一.在 WEB 应用方面,MySQL 是最好的 ...
- Unity 2D Sprite 俯视角渲染顺序设置
今天结合网上的一个教程复习了一下Unity中2D俯视角游戏的渲染顺序设置. 首先是在Hierachy中的摆放顺序,靠下的物体渲染顺序靠后: 然后是Sprite Renderer组件,可以通过组件中的S ...
- [复现]2021 DASCTF X BUUOJ 五月大联动-PWN
[复现]2021 DASCTF X BUUOJ 五月大联动 由于我没ubuntu16就不复现第一个题了,直接第二个 正常的off by one from pwn import * context.os ...