首先第一步,位运算拆位。变为一个区间的 \(And\) 为 \(0\) 或 \(1\)。

如果 \(And\) 为 \(1\),那么所有数都需要为 \(1\),否则为 \(0\)。

我们把所有可能为 \(0\) 的位置拉出来,然后和区间进行离散化。这个可以做到 \(O(n+m)\),处理每个位置前面第一个可能为 \(0\) 的位置即可。

问题转化为一个序列的一些区间中必须包含至少一个 \(0\)。仔细看看,好像和 命运 在链上的情况有点像。

于是。我们设上一个 \(dp[n][k]\) 表示当前从左往右扫描到第 \(n\) 个数,上一个 \(0\) 出现在第 \(k\) 个位置上。

分两种情况:是某个区间的右端点和不是某个区间的右端点。对于每个是右端点的位置,我们存下左端点中最靠右的那个设为 \(L_n\)。

是右端点:

\[dp[n][k]=[L_n\leq k]dp[n-1][k]
\]
\[dp[n][n]=\sum_{i=1}^{n-1}dp[n-1][i]
\]

不是右端点:

\[dp[n][k]=dp[n-1][k]
\]
\[dp[n][n]=\sum_{i=1}^{n-1}dp[n-1][i]
\]

问题相当于每次让 \(dp[n]\) 继承 \(dp[n-1]\),然后删掉某一段左端点,然后插入一个位置为左边的位置的和。

我们可以维护一个区间 \([L,R]\) 表示目前有值的区间,然后用一个 \(sum\) 维护区间的和,然后就做完了。

答案是每一位最后的 \(sum\) 的积。

#include<cstdio>
typedef unsigned ui;
const ui M=5e5+5,mod=998244353;
ui n,k,m,l[M],r[M],x[M];
ui s[M];
inline ui max(const ui&a,const ui&b){
return a>b?a:b;
}
inline ui Solve(const ui&k){
ui len(0);
static ui t[M],L[M],dp[M],pre[M];
for(ui i=1;i<=n;++i)s[i]=0;
for(ui i=1;i<=m;++i)if(t[i]=x[i]>>k&1)++s[l[i]],--s[r[i]+1];
for(ui i=1;i<=n;++i)s[i]+=s[i-1];
for(ui i=1;i<=n;++i){
if(!s[i])++len;pre[i]=len;
}
for(ui i=1;i<=len;++i)L[i]=0;
for(ui i=1;i<=m;++i)if(!t[i])L[pre[r[i]]]=max(L[pre[r[i]]],s[l[i]]?pre[l[i]]+1:pre[l[i]]);
for(ui i=1;i<=len;++i)L[i]=max(L[i],L[i-1]);
ui l(0),r(0);unsigned long long sum(1);dp[0]=1;
for(ui i=1;i<=len;++i){
while(l<L[i-1])sum-=dp[l++];dp[i]=sum%mod;sum+=dp[i];
}
while(l<L[len])sum-=dp[l++];
return sum%mod;
}
signed main(){
ui ans(1);
scanf("%u%u%u",&n,&k,&m);
for(ui i=1;i<=m;++i)scanf("%u%u%u",l+i,r+i,x+i);
for(ui i=0;i<k;++i)ans=1ull*ans*Solve(i)%mod;
printf("%u",ans);
}

CF1327F题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. having筛选结果集

    题目要求:让你输出有两科及其以上挂科(60分及格)的学生的名单? name subject score 错误的做法: mysql> select name, count(scoure<60 ...

  2. udp的第一个例子

    import java.io.IOException; import java.net.DatagramPacket; import java.net.DatagramSocket; import j ...

  3. 前端语言之js(对比python快速入门)

    昨日内容回顾 浮动 定位 溢出 透明度 模态框 今日内容概要 变量与常量 基本数据类型 数据类型内置方法 函数 常见内置对象 BOM与DOM操作 内容详细 1.变量与常量 # 在JS中声明变量需要使用 ...

  4. 论文解读(IDEC)《Improved Deep Embedded Clustering with Local Structure Preservation》

    Paper Information Title:<Improved Deep Embedded Clustering with Local Structure Preservation>A ...

  5. php base64格式的图片字符串和图片文件相互转换的代码

    在移动端上传图片的时候通常会将图片转换成base64格式的字符串提交,所以此时需要使用服务器端的程序进行转换成二进制的数据.如下PHP代码实现了图片文件和base64格式的图片字符串相互转换的方法,同 ...

  6. JavaScript函数式编程(纯函数、柯里化以及组合函数)

    JavaScript函数式编程(纯函数.柯里化以及组合函数) 前言 函数式编程(Functional Programming),又称为泛函编程,是一种编程范式.早在很久以前就提出了函数式编程这个概念了 ...

  7. 使用IDEA新建一个Spring Boot项目

    本文使用Spring Initializer来创建 开发环境 操作系统:Windows 10 IDEA:2020.3.2 JDK:1.8 1. 启动IDEA,选择New Project(新建工程): ...

  8. Mybatis获取自增主键的两种方式

    <insert id="saveOne" parameterType="com.buwei.entity.User" > INSERT into u ...

  9. kali linux更新msf 报错Unable to find a spec satisfying metasploit-framework (>= 0) in the set. Perhaps the解决办法

    首先换更新源 :vim  /etc/apt/sources.list deb http://mirrors.ustc.edu.cn/kali kali-rolling main non-free co ...

  10. base家族在线解密工具

    http://www.atoolbox.net/Tool.php?Id=934 https://ctf.bugku.com/tools