事先声明

此题解为一篇洛谷题解的详细补充这里(我才不告诉你我这道题想了好久)

题目大意

有 \(n\) 个任务,记作 \(t\) 数组,由于主人公很懒,所以他每天都要睡觉,每一天都有 \(x\) 小时。

前 \(i\) 天睡觉的下限为 \(r \cdot x \cdot i\) ,其中 \(r\) 为给定实数。

求至少需要多少天才能完成任务。

分析(你以为你打的是暴力,其实是正解)

考虑一种暴力做法,即模拟。

每天考虑不同的任务,能做就做,不能做则睡觉。(算贪心吗?)

question1: \(t\) 数组要排序嘛?

  • 面对这个问题,我们从一般角度来看都是解不出来的,所以我们考虑转换思路

  • 我们从全局考虑这个问题

  • 因为 \(\sum_{i=1}^{n} t_i\) 是恒定的,所以每一天都是独立的,也就是两天之间没有联系。

  • 又因为 \(\sum_{i=1}r\cdot x \cdot i\) 也是恒定的。

  • 所以总时间=睡觉的时间+工作的时间是恒定的。

  • 所以 \(t\) 数组的顺序没有强制要求。

然后代码就出来了。

可以发现会被卡掉(别问为什么),所以考虑优化。

优化?

容易发现,如果每天都可以做任务的话,时间复杂度就为 \(O(n)\) 远远够得,所以不可能会被卡

发现了什么?

有些天他整天睡觉的

而这些天都算进了我们的循环,太浪费了,我们考虑把这些天过滤掉,这样时间复杂度就为线性了!

假设当前面对的是 \(tot\) 个任务,即 \(t_{tot}\) ,目前总睡觉时间为 \(sl\) ,现在是第 \(j\) 天。

那么当 \(x-a_{tot}+sl<m \cdot j \cdot \frac{p}{q}\) ,这一天肯定做不了任务了,所以我们让他睡觉。

假设要睡 \(i\) 天觉 那么有 \(m - a_{tot} + sl + i \cdot m \ge m \cdot(i+j) \cdot \frac{p}{q}\)

简单移项可以得到 \(i \ge \cfrac{j \cdot m \cdot p - q \cdot (m - a_{tot})+sl}{m\cdot(q-p)}\)

取等号最小,所以 \(i =\left \lceil \cfrac{j \cdot m \cdot p - q \cdot (m - a_{tot})+sl}{m\cdot(q-p)} \right \rceil\) ,其中 \(\left \lceil \right \rceil\) ,为向上取整。

question2:向上取整怎么计算

  • 虽然c++有向上取整的函数,但是假设我们不知道,但是我们知道, \(int\) 会自动向下取整,那么,有什么方式可以让向上取整和向下取整相互转换吗?

  • 答案是有的,有个公式: \(\left \lceil \cfrac{x}{y} \right \rceil = \left \lfloor \cfrac{x+y-1}{y} \right \rfloor\)

  • 怎么证明呢?

  • 我们分类讨论。

  1. 我们设 \(y | x\) ,则我们可以设 \(x=ky(k \in \mathbb{Z})\) ,则我们只需证 \(\left \lceil k \right \rceil = \left \lfloor k+1-1 \right \rfloor\) ,明显成立。
  2. 我们设 \(x=ky+p(k,p \in \mathbb{Z})\) , \(p \in (1,y-1]\) , 则我们只需证 \(\left \lceil k+\cfrac{p}{y} \right \rceil = \left \lfloor k+1+\cfrac{p}{y}-\cfrac{1}{y} \right \rfloor\) ,又因为 \(p<y\) ,则原式 \(k+1=k+1\) ,显然成立。

    于是,这道题就做完了,这里配上代码

Code

#include<bits/stdc++.h>

using namespace std;

#define int long long 

const int MAXN = 1e5 + 7;

int n, x, p, q, t[MAXN];

signed main() {
ios::sync_with_stdio(false);
cin.tie(NULL);//cin的加速 cin >> n >> x >> p >> q;
for (int i = 1; i <= n; i ++) cin >> t[i]; int tot = 1, sl = 0;
for (int j = 1; ; j ++) {
if ((x - t[tot] + sl) * q < x * p * j) {//需要睡觉
int i = (x * p * j - (x - t[tot] + sl) * q + (x * (q - p)) - 1) / (x * (q - p));//我们推出来的式子
j += i, sl += i * x;//加上去
}
int ans = x;//ans:睡觉时间,一开始全天都要睡觉
while (true) {
if (tot > n) break;//做完了
if (ans <= t[tot]) break;//不够做
if ((ans - t[tot] + sl) * q < x * p * j) break;//不够做
ans -= t[tot], tot++;//睡觉时间减掉,tot++
}
sl += ans;//睡觉时间加上ans
if (tot > n) {
cout << j << endl;//输出
break;
}
}
return chen_zhe;
}

完结撒花✿✿ヽ(°▽°)ノ✿

洛谷P8508 做不完的作业【题解】的更多相关文章

  1. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  2. 洛谷 P2253 好一个一中腰鼓! 题解

    P2253 好一个一中腰鼓! 题目背景 话说我大一中的运动会就要来了,据本班同学剧透(其实早就知道了),我萌萌的初二年将要表演腰鼓[喷],这个无厘头的题目便由此而来. Ivan乱入:"忽一人 ...

  3. 洛谷 P2949 [USACO09OPEN]工作调度Work Scheduling 题解

    P2949 [USACO09OPEN]工作调度Work Scheduling 题目描述 Farmer John has so very many jobs to do! In order to run ...

  4. 洛谷P5664 Emiya 家今天的饭 题解 动态规划

    首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...

  5. 洛谷【P5004 专心OI - 跳房子】 题解

    题目链接 https://www.luogu.org/problem/P5004 洛谷 P5004 专心OI - 跳房子 Imakf有一天参加了PINO 2017 PJ组,他突然看见最后一道题 他十分 ...

  6. 洛谷P3387 【模板】缩点 题解

    背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...

  7. [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)

    [NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...

  8. [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)

    [洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...

  9. BZOJ5288 & 洛谷4436 & LOJ2508:[HNOI/AHOI2018]游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5288 https://www.luogu.org/problemnew/show/P4436 ht ...

  10. BZOJ4943 & 洛谷3823 & UOJ315:[NOI2017]蚯蚓排队——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4943 http://uoj.ac/problem/315 https://www.luogu.or ...

随机推荐

  1. 2022年最新最详细IDEA关联数据库方式、在IDEA中进行数据库的可视化操作(包含图解过程)

    文章目录 1.使用IDEA关联Mysql数据库的详细操作步骤 1.1 打开侧边栏的Database 2.2. 选择要连接的数据库(Mysql) 2.3 .输入要连接的数据库.用户名.密码 2.4 .点 ...

  2. 驱动开发:内核运用LoadImage屏蔽驱动

    在笔者上一篇文章<驱动开发:内核监视LoadImage映像回调>中LyShark简单介绍了如何通过PsSetLoadImageNotifyRoutine函数注册回调来监视驱动模块的加载,注 ...

  3. SQL--Row_Number() over()的使用

    1.语法 --over里面有两个参数 --partition by 用于分割区域 此参数可选 --order by 用于排序 此参数必有 row_number() over(partition by ...

  4. day09-Tomcat01

    Tomcat01 1.WEB开发介绍 WEB,在英文中WEB表示网/网络资源,它用于表示WEB服务器(主机)供浏览器访问的资源 WEB服务器(主机)上供外界访问的Web资源为: 静态web资源(如ht ...

  5. 聊聊GPU与CPU的区别

    目录 前言 CPU是什么? GPU是什么? GPU与CPU的区别 GPU的由来 并行计算 GPU架构优化 GPU和CPU的应用场景 作者:小牛呼噜噜 | https://xiaoniuhululu.c ...

  6. SQLSever事务

    1. 为什么要使用事务? 当一个存储过程或多个SQL语句(指代insert.update.delete类型)依次执行时候, 如果其中一条或几条发生错误,但是其他的还会继续执行,会造成数据的不一致,非常 ...

  7. 【云原生 · Kubernetes】部署 kube-proxy 组件

    个人名片: 因为云计算成为了监控工程师‍ 个人博客:念舒_C.ying CSDN主页️:念舒_C.ying kube-proxy 运行在所有 worker 节点上,它监听 apiserver 中 se ...

  8. __init__、__all__

    在python中 引用模块包的时候,要先进入此模块的__init__.py中畅游一遍,因此,我们多次需要一个语句的时候,就可以将这些语句写入到__init__.py中: 在使用*号的时候我们可以用__ ...

  9. ssh框架中文保存数据库MySQL乱码

    检查后台获取前端页面数据打印到console控制台无乱码:tomcat配置没有问题: 检查MySQL数据库编码设置:字符集:utf8 -- UTF-8 Unicode,排序规则:utf8_genera ...

  10. 喜欢用Map却从未遭遇内存泄露的Java程序员上辈子都是神仙

    前言 点进来这篇文章的大概有两种人,一种是喜欢用Map的想看看自己是不是有可能也会踩雷,一种是不喜欢用Map的想进来看看那些喜欢用的人是怎么踩雷的. 那你要失望了,我只是单纯把公司最近代码审查时一个关 ...