洛谷P8508 做不完的作业【题解】
事先声明
此题解为一篇洛谷题解的详细补充,这里(我才不告诉你我这道题想了好久)
题目大意
有 \(n\) 个任务,记作 \(t\) 数组,由于主人公很懒,所以他每天都要睡觉,每一天都有 \(x\) 小时。
前 \(i\) 天睡觉的下限为 \(r \cdot x \cdot i\) ,其中 \(r\) 为给定实数。
求至少需要多少天才能完成任务。
分析(你以为你打的是暴力,其实是正解)
考虑一种暴力做法,即模拟。
每天考虑不同的任务,能做就做,不能做则睡觉。(算贪心吗?)
question1: \(t\) 数组要排序嘛?
面对这个问题,我们从一般角度来看都是解不出来的,所以我们考虑转换思路。
我们从全局考虑这个问题
因为 \(\sum_{i=1}^{n} t_i\) 是恒定的,所以每一天都是独立的,也就是两天之间没有联系。
又因为 \(\sum_{i=1}r\cdot x \cdot i\) 也是恒定的。
所以总时间=睡觉的时间+工作的时间是恒定的。
所以 \(t\) 数组的顺序没有强制要求。
然后代码就出来了。
可以发现会被卡掉(别问为什么),所以考虑优化。
优化?
容易发现,如果每天都可以做任务的话,时间复杂度就为 \(O(n)\) 远远够得,所以不可能会被卡
发现了什么?
有些天他整天睡觉的
而这些天都算进了我们的循环,太浪费了,我们考虑把这些天过滤掉,这样时间复杂度就为线性了!
假设当前面对的是 \(tot\) 个任务,即 \(t_{tot}\) ,目前总睡觉时间为 \(sl\) ,现在是第 \(j\) 天。
那么当 \(x-a_{tot}+sl<m \cdot j \cdot \frac{p}{q}\) ,这一天肯定做不了任务了,所以我们让他睡觉。
假设要睡 \(i\) 天觉 那么有 \(m - a_{tot} + sl + i \cdot m \ge m \cdot(i+j) \cdot \frac{p}{q}\)
简单移项可以得到 \(i \ge \cfrac{j \cdot m \cdot p - q \cdot (m - a_{tot})+sl}{m\cdot(q-p)}\)
取等号最小,所以 \(i =\left \lceil \cfrac{j \cdot m \cdot p - q \cdot (m - a_{tot})+sl}{m\cdot(q-p)} \right \rceil\) ,其中 \(\left \lceil \right \rceil\) ,为向上取整。
question2:向上取整怎么计算
虽然c++有向上取整的函数,但是假设我们不知道,但是我们知道, \(int\) 会自动向下取整,那么,有什么方式可以让向上取整和向下取整相互转换吗?
答案是有的,有个公式: \(\left \lceil \cfrac{x}{y} \right \rceil = \left \lfloor \cfrac{x+y-1}{y} \right \rfloor\)
怎么证明呢?
我们分类讨论。
- 我们设 \(y | x\) ,则我们可以设 \(x=ky(k \in \mathbb{Z})\) ,则我们只需证 \(\left \lceil k \right \rceil = \left \lfloor k+1-1 \right \rfloor\) ,明显成立。
- 我们设 \(x=ky+p(k,p \in \mathbb{Z})\) , \(p \in (1,y-1]\) , 则我们只需证 \(\left \lceil k+\cfrac{p}{y} \right \rceil = \left \lfloor k+1+\cfrac{p}{y}-\cfrac{1}{y} \right \rfloor\) ,又因为 \(p<y\) ,则原式 \(k+1=k+1\) ,显然成立。
于是,这道题就做完了,这里配上代码
Code
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int MAXN = 1e5 + 7;
int n, x, p, q, t[MAXN];
signed main() {
ios::sync_with_stdio(false);
cin.tie(NULL);//cin的加速
cin >> n >> x >> p >> q;
for (int i = 1; i <= n; i ++) cin >> t[i];
int tot = 1, sl = 0;
for (int j = 1; ; j ++) {
if ((x - t[tot] + sl) * q < x * p * j) {//需要睡觉
int i = (x * p * j - (x - t[tot] + sl) * q + (x * (q - p)) - 1) / (x * (q - p));//我们推出来的式子
j += i, sl += i * x;//加上去
}
int ans = x;//ans:睡觉时间,一开始全天都要睡觉
while (true) {
if (tot > n) break;//做完了
if (ans <= t[tot]) break;//不够做
if ((ans - t[tot] + sl) * q < x * p * j) break;//不够做
ans -= t[tot], tot++;//睡觉时间减掉,tot++
}
sl += ans;//睡觉时间加上ans
if (tot > n) {
cout << j << endl;//输出
break;
}
}
return chen_zhe;
}
完结撒花✿✿ヽ(°▽°)ノ✿
洛谷P8508 做不完的作业【题解】的更多相关文章
- 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...
- 洛谷 P2253 好一个一中腰鼓! 题解
P2253 好一个一中腰鼓! 题目背景 话说我大一中的运动会就要来了,据本班同学剧透(其实早就知道了),我萌萌的初二年将要表演腰鼓[喷],这个无厘头的题目便由此而来. Ivan乱入:"忽一人 ...
- 洛谷 P2949 [USACO09OPEN]工作调度Work Scheduling 题解
P2949 [USACO09OPEN]工作调度Work Scheduling 题目描述 Farmer John has so very many jobs to do! In order to run ...
- 洛谷P5664 Emiya 家今天的饭 题解 动态规划
首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...
- 洛谷【P5004 专心OI - 跳房子】 题解
题目链接 https://www.luogu.org/problem/P5004 洛谷 P5004 专心OI - 跳房子 Imakf有一天参加了PINO 2017 PJ组,他突然看见最后一道题 他十分 ...
- 洛谷P3387 【模板】缩点 题解
背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...
- [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)
[NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...
- [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)
[洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...
- BZOJ5288 & 洛谷4436 & LOJ2508:[HNOI/AHOI2018]游戏——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5288 https://www.luogu.org/problemnew/show/P4436 ht ...
- BZOJ4943 & 洛谷3823 & UOJ315:[NOI2017]蚯蚓排队——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4943 http://uoj.ac/problem/315 https://www.luogu.or ...
随机推荐
- Chrony时间同步服务
概: 网络时间协议(Network Time Protocol,NTP)是用于网络时间同步的协议.提供NTP时间同步服务的软件有很多,这里采用Chrony软件来实现时间同步 chrony 的优势: ...
- Asp.Net Core MVC传值 Asp.Net Core API 前台写法
$("#Add_User").click(function () { var obj = { //"属性名": 传递的值, "User_Name&qu ...
- 三、docker镜像管理
一.docker镜像管理 1.1.镜像搜索-search 从docker镜像仓库模糊搜索镜像 用法: docker search 镜像关键字 [root@zutuanxue ~]# docker se ...
- 你给文字描述,AI艺术作画,精美无比!附源码,快来试试!
作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai ...
- Java函数式编程:三、流与函数式编程
本文是Java函数式编程的最后一篇,承接上文: Java函数式编程:一.函数式接口,lambda表达式和方法引用 Java函数式编程:二.高阶函数,闭包,函数组合以及柯里化 前面都是概念和铺垫,主要讲 ...
- 嵌入式-C语言基础:数组得初始化
#include<stdio.h> int main() { int a[10]; int size=sizeof(a)/sizeof(a[0]);//计算数组得大小 for(int i= ...
- perl匹配特殊写法
my $name='4'; #找匹配4 for($name) { if(/^4$/) { print "success\n"; } else { print "faile ...
- fastjson远程代码执行漏洞
fastjson漏洞学习记录 免责声明: Fastjson 1.2.24 远程代码执行漏洞 漏洞说明 前提条件 影响范围 漏洞复现 Fastjson<=1.2.47 远程代码执行漏洞 Fastj ...
- C++初阶(运算符重载汇总+实例)
运算重载符 概念: 运算符重载是具有特殊函数名的函数,也具有其返回值类型,函数名字以及参数列表,其返回值类型与参数列表与普通的函数类似. 函数原型: 返回值 operator操作符(参数列表) 注意: ...
- 让 Serverless 更普惠,阿里云函数计算 FC 宣布全面降价,最大幅度达 37.5%
11月5日,2022 杭州 · 云栖大会上,阿里云宣布函数计算 FC 开启全面降价,vCPU 单价降幅** 11%,其他的各个独立计费项最高降幅达 37.5%**. 本次云栖大会上,阿里云智能总裁张建 ...