京东物流:康睿 姚再毅 李振 刘斌 王北永

说明:以下全部均基于elasticsearch8.1 版本

一.跨集群检索 - ccr

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/modules-cross-cluster-search.html

跨集群检索的背景和意义

跨集群检索定义

跨集群检索环境搭建

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/modules-cross-cluster-search.html

步骤1:搭建两个本地单节点集群,本地练习可取消安全配置

步骤2:每个集群都执行以下命令

PUT _cluster/settings { "persistent": { "cluster": { "remote": { "cluster_one": { "seeds": [ "172.21.0.14:9301" ] },"cluster_two": { "seeds": [ "172.21.0.14:9302" ] } } } } }

步骤3:验证集群之间是否互通

方案1:Kibana 可视化查看:stack Management -> Remote Clusters -> status 应该是 connected! 且必须打上绿色的对号。

​ 方案2:GET _remote/info

跨集群查询演练

# 步骤1 在集群 1 中添加数据如下
PUT test01/_bulk
{"index":{"_id":1}}
{"title":"this is from cluster01..."} # 步骤2 在集群 2 中添加数据如下:
PUT test01/_bulk
{"index":{"_id":1}}
{"title":"this is from cluster02..."} # 步骤 3:执行跨集群检索如下: 语法:POST 集群名称1:索引名称,集群名称2:索引名称/_search
POST cluster_one:test01,cluster_two:test01/_search
{
"took" : 7,
"timed_out" : false,
"num_reduce_phases" : 3,
"_shards" : {
"total" : 2,
"successful" : 2,
"skipped" : 0,
"failed" : 0
},
"_clusters" : {
"total" : 2,
"successful" : 2,
"skipped" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "cluster_two:test01",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"title" : "this is from cluster02..."
}
},
{
"_index" : "cluster_one:test01",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"title" : "this is from cluster01..."
}
}
]
}
}

二.跨集群复制 - ccs - 该功能需付费

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/current/xpack-ccr.html

如何保障集群的高可用

  1. 副本机制
  2. 快照和恢复
  3. 跨集群复制(类似mysql 主从同步)

跨集群复制概述

跨集群复制配置

  1. 准备两个集群,网络互通
  2. 开启 license 使用,可试用30天
  • 开启位置:Stack Management -> License mangement.

3.定义好谁是Leads集群,谁是follower集群

4.在follower集群配置Leader集群

5.在follower集群配置Leader集群的索引同步规则(kibana页面配置)

a.stack Management -> Cross Cluster Replication -> create a follower index.

6.启用步骤5的配置


三索引模板

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/index-templates.html

8.X之组件模板

1.创建组件模板-索引setting相关

# 组件模板 - 索引setting相关
PUT _component_template/template_sttting_part
{
"template": {
"settings": {
"number_of_shards": 3,
"number_of_replicas": 0
}
}
}

2.创建组件模板-索引mapping相关

# 组件模板 - 索引mapping相关
PUT _component_template/template_mapping_part
{
"template": {
"mappings": {
"properties": {
"hosr_name":{
"type": "keyword"
},
"cratet_at":{
"type": "date",
"format": "EEE MMM dd HH:mm:ss Z yyyy"
}
}
}
}
}

3.创建组件模板-配置模板和索引之间的关联

// **注意:composed_of 如果多个组件模板中的配置项有重复,后面的会覆盖前面的,和配置的顺序有关**
# 基于组件模板,配置模板和索引之间的关联
# 也就是所有 tem_* 该表达式相关的索引创建时,都会使用到以下规则
PUT _index_template/template_1
{
"index_patterns": [
"tem_*"
],
"composed_of": [
"template_sttting_part",
"template_mapping_part"
]
}

4.测试

# 创建测试
PUT tem_001

索引模板基本操作

实战演练

需求1:默认如果不显式指定Mapping,数值类型会被动态映射为long类型,但实际上业务数值都比较小,会存在存储浪费。需要将默认值指定为Integer

索引模板,官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/index-templates.html

mapping-动态模板,官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/dynamic-templates.html

# 结合mapping 动态模板 和 索引模板
# 1.创建组件模板之 - mapping模板
PUT _component_template/template_mapping_part_01
{
"template": {
"mappings": {
"dynamic_templates": [
{
"integers": {
"match_mapping_type": "long",
"mapping": {
"type": "integer"
}
}
}
]
}
}
} # 2. 创建组件模板与索引关联配置
PUT _index_template/template_2
{
"index_patterns": ["tem1_*"],
"composed_of": ["template_mapping_part_01"]
} # 3.创建测试数据
POST tem1_001/_doc/1
{
"age":18
} # 4.查看mapping结构验证
get tem1_001/_mapping

需求2:date_*开头的字段,统一匹配为date日期类型。

索引模板,官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/index-templates.html

mapping-动态模板,官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/dynamic-templates.html

# 结合mapping 动态模板 和 索引模板
# 1.创建组件模板之 - mapping模板
PUT _component_template/template_mapping_part_01
{
"template": {
"mappings": {
"dynamic_templates": [
{
"integers": {
"match_mapping_type": "long",
"mapping": {
"type": "integer"
}
}
},
{
"date_type_process": {
"match": "date_*",
"mapping": {
"type": "date",
"format":"yyyy-MM-dd HH:mm:ss"
}
}
}
]
}
}
} # 2. 创建组件模板与索引关联配置
PUT _index_template/template_2
{
"index_patterns": ["tem1_*"],
"composed_of": ["template_mapping_part_01"]
} # 3.创建测试数据
POST tem1_001/_doc/2
{
"age":19,
"date_aoe":"2022-01-01 18:18:00"
} # 4.查看mapping结构验证
get tem1_001/_mapping

四.LIM 索引生命周期管理

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/index-lifecycle-management.html

什么是索引生命周期

索引的 生-> 老 -> 病 -> 死

是否有过考虑,如果一个索引,创建之后,就不再去管理了?会发生什么?

什么是索引生命周期管理

索引太大了会如何?

大索引的恢复时间,要远比小索引恢复慢的多的多索引大了以后,检索会很慢,写入和更新也会受到不同程度的影响索引大到一定程度,当索引出现健康问题,会导致整个集群核心业务不可用

最佳实践

集群的单个分片最大文档数上限:2的32次幂减1,即20亿左右官方建议:分片大小控制在30GB-50GB,若索引数据量无限增大,肯定会超过这个值

用户不关注全量

某些业务场景,业务更关注近期的数据,如近3天、近7天大索引会将全部历史数据汇集在一起,不利于这种场景的查询

索引生命周期管理的历史演变

LIM前奏 - rollover 滚动索引

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/index-rollover.html

# 0.自测前提,lim生命周期rollover频率。默认10分钟
PUT _cluster/settings
{
"persistent": {
"indices.lifecycle.poll_interval": "1s"
}
} # 1. 创建索引,并指定别名
PUT test_index-0001
{
"aliases": {
"my-test-index-alias": {
"is_write_index": true
}
}
} # 2.批量导入数据
PUT my-test-index-alias/_bulk
{"index":{"_id":1}}
{"title":"testing 01"}
{"index":{"_id":2}}
{"title":"testing 02"}
{"index":{"_id":3}}
{"title":"testing 03"}
{"index":{"_id":4}}
{"title":"testing 04"}
{"index":{"_id":5}}
{"title":"testing 05"} # 3.rollover 滚动规则配置
POST my-test-index-alias/_rollover
{
"conditions": {
"max_age": "7d",
"max_docs": 5,
"max_primary_shard_size": "50gb"
}
} # 4.在满足条件的前提下创建滚动索引
PUT my-test-index-alias/_bulk
{"index":{"_id":7}}
{"title":"testing 07"} # 5.查询验证滚动是否成功
POST my-test-index-alias/_search

LIM前奏 - shrink 索引压缩

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/ilm-shrink.html

核心步骤:

1. 将数据全部迁移至一个独立的节点

2. 索引禁止写入

3. 方可进行压缩

# 1.准备测试数据
DELETE kibana_sample_data_logs_ext
PUT kibana_sample_data_logs_ext
{
"settings": {
"number_of_shards": 5,
"number_of_replicas": 0
}
}
POST _reindex
{
"source": {
"index": "kibana_sample_data_logs"
},
"dest": {
"index": "kibana_sample_data_logs_ext"
}
} # 2.压缩前必要的条件设置
# number_of_replicas :压缩后副本为0
# index.routing.allocation.include._tier_preference 数据分片全部路由到hot节点
# "index.blocks.write 压缩后索引不再允许数据写入
PUT kibana_sample_data_logs_ext/_settings
{
"settings": {
"index.number_of_replicas": 0,
"index.routing.allocation.include._tier_preference": "data_hot",
"index.blocks.write": true
}
} # 3.实施压缩
POST kibana_sample_data_logs_ext/_shrink/kibana_sample_data_logs_ext_shrink
{
"settings":{
"index.number_of_replicas": 0,
"index.number_of_shards": 1,
"index.codec":"best_compression"
},
"aliases":{
"kibana_sample_data_logs_alias":{}
}
}

LIM实战

全局认知建立 - 四大阶段

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/overview-index-lifecycle-management.html

生命周期管理阶段(Policy):

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/ilm-index-lifecycle.html

Hot阶段(生)

Set priority

Unfollow

Rollover

Read-only

Shrink

Force Merge

Search snapshot

Warm阶段(老)

Set priority

Unfollow

Read-only

Allocate

migrate

Shirink

Force Merge

Cold阶段(病)

Search snapshot

Delete阶段(死)

delete

演练

1.创建policy

  • Hot阶段设置,rollover: max_age:3d,max_docs:5, max_size:50gb, 优先级:100

  • Warm阶段设置:min_age:15s , forcemerage段合并,热节点迁移到warm节点,副本数设置0,优先级:50

  • Cold阶段设置: min_age 30s, warm迁移到cold阶段

  • Delete阶段设置:min_age 45s,执行删除操作

PUT _ilm/policy/kr_20221114_policy
{
"policy": {
"phases": {
"hot": {
"min_age": "0ms",
"actions": {
"set_priority": {
"priority": 100
},
"rollover": {
"max_size": "50gb",
"max_primary_shard_size": "50gb",
"max_age": "3d",
"max_docs": 5
}
}
},
"warm": {
"min_age": "15s",
"actions": {
"forcemerge": {
"max_num_segments": 1
},
"set_priority": {
"priority": 50
},
"allocate": {
"number_of_replicas": 0
}
}
},
"cold": {
"min_age": "30s",
"actions": {
"set_priority": {
"priority": 0
}
}
},
"delete": {
"min_age": "45s",
"actions": {
"delete": {
"delete_searchable_snapshot": true
}
}
}
}
}
}

2.创建index template

PUT _index_template/kr_20221114_template
{
"index_patterns": ["kr_index-**"],
"template": {
"settings": {
"index": {
"lifecycle": {
"name": "kr_20221114_policy",
"rollover_alias": "kr-index-alias"
},
"routing": {
"allocation": {
"include": {
"_tier_preference": "data-hot"
}
}
},
"number_of_shards": "3",
"number_of_replicas": "1"
}
},
"aliases": {},
"mappings": {}
}
}

3.测试需要修改lim rollover刷新频率

PUT _cluster/settings
{
"persistent": {
"indices.lifecycle.poll_interval": "1s"
}
}

4.进行测试

# 创建索引,并制定可写别名
PUT kr_index-0001
{
"aliases": {
"kr-index-alias": {
"is_write_index": true
}
}
}
# 通过别名新增数据
PUT kr-index-alias/_bulk
{"index":{"_id":1}}
{"title":"testing 01"}
{"index":{"_id":2}}
{"title":"testing 02"}
{"index":{"_id":3}}
{"title":"testing 03"}
{"index":{"_id":4}}
{"title":"testing 04"}
{"index":{"_id":5}}
{"title":"testing 05"}
# 通过别名新增数据,触发rollover
PUT kr-index-alias/_bulk
{"index":{"_id":6}}
{"title":"testing 06"}
# 查看索引情况
GET kr_index-0001 get _cat/indices?v

过程总结

第一步:配置 lim pollicy

  • 横向:Phrase 阶段(Hot、Warm、Cold、Delete) 生老病死

  • 纵向:Action 操作(rollover、forcemerge、readlyonly、delete)

第二步:创建模板 绑定policy,指定别名

第三步:创建起始索引

第四步:索引基于第一步指定的policy进行滚动


五.Data Stream

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/ilm-actions.html

特性解析

Data Stream让我们跨多个索引存储时序数据,同时给了唯一的对外接口(data stream名称)

  • 写入和检索请求发给data stream

  • data stream将这些请求路由至 backing index(后台索引)

Backing indices

每个data stream由多个隐藏的后台索引构成

  • 自动创建

  • 要求模板索引

rollover 滚动索引机制用于自动生成后台索引

  • 将成为data stream 新的写入索引

应用场景

  1. 日志、事件、指标等其他持续创建(少更新)的业务数据
  2. 两大核心特点
  3. 时序性数据
  4. 数据极少更新或没有更新

创建Data Stream 核心步骤

官网文档地址:

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/set-up-a-data-stream.html

Set up a data stream

To set up a data stream, follow these steps:

  1. Create an index lifecycle policy
  2. Create component templates
  3. Create an index template
  4. Create the data stream
  5. Secure the data stream

演练

1. 创建一个data stream,名称为my-data-stream

2. index_template 名称为 my-index-template

3. 满足index格式【"my-data-stream*"】的索引都要被应用到

4. 数据插入的时候,在data_hot节点

5. 过3分钟之后要rollover到data_warm节点

6. 再过5分钟要到data_cold节点

# 步骤1 。创建 lim policy
PUT _ilm/policy/my-lifecycle-policy
{
"policy": {
"phases": {
"hot": {
"actions": {
"rollover": {
"max_size": "50gb",
"max_age": "3m",
"max_docs": 5
},
"set_priority": {
"priority": 100
}
}
},
"warm": {
"min_age": "5m",
"actions": {
"allocate": {
"number_of_replicas": 0
},
"forcemerge": {
"max_num_segments": 1
},
"set_priority": {
"priority": 50
}
}
},
"cold": {
"min_age": "6m",
"actions": {
"freeze":{}
}
},
"delete": {
"min_age": "45s",
"actions": {
"delete": {}
}
}
}
}
} # 步骤2 创建组件模板 - mapping
PUT _component_template/my-mappings
{
"template": {
"mappings": {
"properties": {
"@timestamp": {
"type": "date",
"format": "date_optional_time||epoch_millis"
},
"message": {
"type": "wildcard"
}
}
}
},
"_meta": {
"description": "Mappings for @timestamp and message fields",
"my-custom-meta-field": "More arbitrary metadata"
}
} # 步骤3 创建组件模板 - setting
PUT _component_template/my-settings
{
"template": {
"settings": {
"index.lifecycle.name": "my-lifecycle-policy",
"index.routing.allocation.include._tier_preference":"data_hot"
}
},
"_meta": {
"description": "Settings for ILM",
"my-custom-meta-field": "More arbitrary metadata"
}
} # 步骤4 创建索引模板
PUT _index_template/my-index-template
{
"index_patterns": ["my-data-stream*"],
"data_stream": { },
"composed_of": [ "my-mappings", "my-settings" ],
"priority": 500,
"_meta": {
"description": "Template for my time series data",
"my-custom-meta-field": "More arbitrary metadata"
}
} # 步骤5 创建 data stream 并 写入数据测试
PUT my-data-stream/_bulk
{ "create":{ } }
{ "@timestamp": "2099-05-06T16:21:15.000Z", "message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736" }
{ "create":{ } }
{ "@timestamp": "2099-05-06T16:25:42.000Z", "message": "192.0.2.255 - - [06/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638" } POST my-data-stream/_doc
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
} # 步骤6 查看data stream 后台索引信息
GET /_resolve/index/my-data-stream*

ElasticSearch必知必会-进阶篇的更多相关文章

  1. Elasticsearch必知必会的干货知识二:ES索引操作技巧

    该系列上一篇文章<Elasticsearch必知必会的干货知识一:ES索引文档的CRUD> 讲了如何进行index的增删改查,本篇则侧重讲解说明如何对index进行创建.更改.迁移.查询配 ...

  2. Elasticsearch必知必会的干货知识一:ES索引文档的CRUD

    ​ 若在传统DBMS 关系型数据库中查询海量数据,特别是模糊查询,一般我们都是使用like %查询的值%,但这样会导致无法应用索引,从而形成全表扫描效率低下,即使是在有索引的字段精确值查找,面对海量数 ...

  3. Django框架之第六篇(模型层)--单表查询和必知必会13条、单表查询之双下划线、Django ORM常用字段和参数、关系字段

    单表查询 补充一个知识点:在models.py建表是 create_time = models.DateField() 关键字参数: 1.auto_now:每次操作数据,都会自动刷新当前操作的时间 2 ...

  4. .NET程序员项目开发必知必会—Dev环境中的集成测试用例执行时上下文环境检查(实战)

    Microsoft.NET 解决方案,项目开发必知必会. 从这篇文章开始我将分享一系列我认为在实际工作中很有必要的一些.NET项目开发的核心技术点,所以我称为必知必会.尽管这一系列是使用.NET/C# ...

  5. 2015 前端[JS]工程师必知必会

    2015 前端[JS]工程师必知必会 本文摘自:http://zhuanlan.zhihu.com/FrontendMagazine/20002850 ,因为好东东西暂时没看懂,所以暂时保留下来,供以 ...

  6. [ 学习路线 ] 2015 前端(JS)工程师必知必会 (2)

    http://segmentfault.com/a/1190000002678515?utm_source=Weibo&utm_medium=shareLink&utm_campaig ...

  7. 《MySQL必知必会》[01] 基本查询

    <MySQL必知必会>(点击查看详情) 1.写在前面的话 这本书是一本MySQL的经典入门书籍,小小的一本,也受到众多网友推荐.之前自己学习的时候是啃的清华大学出版社的计算机系列教材< ...

  8. 《SQL必知必会》学习笔记二)

    <SQL必知必会>学习笔记(二) 咱们接着上一篇的内容继续.这一篇主要回顾子查询,联合查询,复制表这三类内容. 上一部分基本上都是简单的Select查询,即从单个数据库表中检索数据的单条语 ...

  9. 关于TCP/IP,必知必会的十个经典问题[转]

    关于TCP/IP,必知必会的十个问题 原创 2018-01-25 Ruheng 技术特工队   本文整理了一些TCP/IP协议簇中需要必知必会的十大问题,既是面试高频问题,又是程序员必备基础素养. 一 ...

  10. Android程序员必知必会的网络通信传输层协议——UDP和TCP

    1.点评 互联网发展至今已经高度发达,而对于互联网应用(尤其即时通讯技术这一块)的开发者来说,网络编程是基础中的基础,只有更好地理解相关基础知识,对于应用层的开发才能做到游刃有余. 对于Android ...

随机推荐

  1. springboot+thymeleaf+bootstrap 超级无敌简洁的页面展示 商城管理页面

    页面效果: <!DOCTYPE html> <html lang="en" xmlns:th="http://www.thymeleaf.org&quo ...

  2. NLP之基于Transformer的句子翻译

    Transformer 目录 Transformer 1.理论 1.1 Model Structure 1.2 Multi-Head Attention & Scaled Dot-Produc ...

  3. 什么是ForkJoin?看这一篇就能掌握!

    摘要:ForkJoin是由JDK1.7之后提供的多线程并发处理框架. 本文分享自华为云社区<[高并发]什么是ForkJoin?看这一篇就够了!>,作者: 冰 河. 在JDK中,提供了这样一 ...

  4. 5 why 分析法,一种用于归纳抽象出解决方案的好方法

    最近在看了<微信背后的产品观 - 张小龙手抄版>,其中有段话如下: 用户需求是零散的,解决方案是归纳抽象的过程 那如何归纳抽象呢?是否有一定的实践方法论呢?经过一轮探讨和学习,有这些答案: ...

  5. flutter 系列之:flutter 中的幽灵offstage

    目录 简介 Offstage详解 Offstage的使用 总结 简介 我们在使用flutter的过程中,有时候需要控制某些组件是否展示,一种方法是将这个组件从render tree中删除,这样这个组件 ...

  6. 如何在.NET程序崩溃时自动创建Dump?

    今天在浏览张队转载文章的留言时,遇到一个读者问了这样的问题,如下图所示: 首先能明确的一点是"程序崩溃退出了是不能用常规的方式dump的",因为整个进程树都已经退出.现场已经无法使 ...

  7. 用Nodejs 实现一个简单的 Redis客户端

    目录 0. 写在前面 1. 背景映入 2. 数据库选择 3. Nodejs TCP连接 3. 代码编写 4. 实验 5. wireshark 抓包分析 6. 杂与代码 0. 写在前面 大家如果有去看过 ...

  8. Oracle设置内存参数后,启动数据库报ORA-00843 ORA-00849解决办法

    Oracle安装完成后,调优内存参数(MEMORY_TARGET和MEMORY_MAX_TARGET设置为0),重启数据库,报ORA-00843 ORA-00849错误. 根据提示,不应将MEMORY ...

  9. ABAP 调用HTTP上传附件

    1.需求说明 在SAP中调用第三方文件服务器的HTTP请求,将文件保存在文件服务器上,并返回保存的文件地址.SAP保存返回的文件地址,通过浏览器进行访问. 2.需求实现 2.1.POSTMAN测试 通 ...

  10. 链接脚本(Linker Scripts)语法和规则解析(自官方手册)

    为了便于与英文原文对照学习与理解(部分翻译可能不准确),本文中的每个子章节标题和引用使用的都是官方手册英文原称.命令及命令行选项统一使用斜体书写.高频小节会用蓝色字体标出. 3 Linker Scri ...