CF链接:Least Prefix Sum

Luogu链接:Least Prefix Sum


$ {\scr \color {CornflowerBlue}{\text{Solution}}} $

先来解释一下题意:

给定一个数组,问最少把多少个数变成相反数,使得$ \forall \cal{i}$,$ \sum_{k=1}^i a_k$ $ \le$ $ \sum_{k=1}^m a_k$

发现对于所有数据点,$ \cal{n} \le 2 \times 10^5$,说明需要 $ Ο(\cal{n \log n}) $ 或者 $ O(\cal{n}) $的算法。

分析一下题目,发现要分成$ \cal{i} > \cal{m}$ 与$ \cal{i} < \cal{m}$两种情况分类讨论

  • 当 $\cal{i}$ $ > \cal{m}$时:

什么时候才能使$ \sum_{k=1}^i a_k$ $ \le$ $ \sum_{k=1}^m a_k$ 成立呢?

是不是只要使新加的每一段都小于等于0就行了?($ \sum_{k=m}^i a_k$ $ \le$ $ 0$)

也很好证明:一个数($ \sum_{k=1}^m a_k$)加上一个小于等于0的数($ \sum_{k={m+1}}^i a_k$),一定不大于原数。

  • 当 $\cal{i}$ $ < \cal{m}$时:

同理,只要使后加的每一段都小于等于0就行了($ \sum_{k=i}^i a_k$ $ \ge$ $ 0$)

也很好证明:一个数($ \sum_{k=1}^i a_k$)加上一个大于等于0的数($ \sum_{k=i}^m a_k$),一定不小于原数。

而且,由于这两种情况类似(博主太懒),那就只考虑当 $\cal{i}$ $ > \cal{m}$的情况吧。

问题已经转化完了,接下来怎么办?

第一眼想到的是贪心。

设当前要取第$\cal{i}$个。

有一个不成熟的贪心:如果目前累加和加上$a_i$还是小于等于$0$的,就加上$a_i$,如果大于$0$了,就把$a_i$取反,$ ans+1$。

Hack数据

5 1
1 -1000 999 2 100

我们只要把999 变成-999就行了,但如果按上面贪心方法,我们要把2,100都改变!

那么贪心就不可以用了吗?

有个神奇的东西交叫反悔贪心!

简单说一下:对于当前不是最优的情况,留到后面重新选择。

我们肯定要让每次改变值后,获得综合最小的值,但当前的选择又不一定最有优。

我们可以用一个优先队列维护,到了每次要改的时候,从优先队列中选出一个收益最大(使目前累加和最大或最小)的值修改。

注意开$ \cal{long long}$并且清空优先队列!

Code(赛时代码,过丑见谅QwQ):

#include<bits/stdc++.h>
#define L long long
using namespace std;
L a[200005];
priority_queue<L,vector<L>,greater<L> > q;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
while(!q.empty()) q.pop();
int n,m,ans=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
if(n==1)
{
printf("0\n");
continue;
}
if(m==1)
{
L mu=0;
for(int i=m+1;i<=n;i++)
{
if(a[i]>=0) mu+=a[i];
else if(a[i]<0 && mu+a[i]>=0)
{
q.push(a[i]);
mu+=a[i];
}
else
{
ans++;
q.push(a[i]);
mu+=a[i];
mu-=2*q.top();
q.pop();
}
}
printf("%d\n",ans);
continue;
}
L mu=0;
for(int i=m+1;i<=n;i++)
{
if(a[i]>=0) mu+=a[i];
else if(a[i]<0 && mu+a[i]>=0)
{
q.push(a[i]);
mu+=a[i];
}
else
{
ans++;
q.push(a[i]);
mu+=a[i];
mu-=2*q.top();
q.pop();
}
}
while(!q.empty()) q.pop();
mu=0;
for(int i=m;i>=2;i--)
{
if(a[i]<=0) mu+=a[i];
else if(a[i]>0 && mu+a[i]<=0)
{
q.push(-a[i]);
mu+=a[i];
}
else
{
ans++;
q.push(-a[i]);
mu+=a[i];
mu+=2*q.top();
q.pop();
}
}
printf("%d\n",ans);
}
return 0;
}

CF1779C Least Prefix Sum 题解的更多相关文章

  1. 牛客网暑期ACM多校训练营(第十场)D Rikka with Prefix Sum (数学)

    Rikka with Prefix Sum 题意: 给出一个数组a,一开始全为0,现在有三种操作: 1.  1 L R W,让区间[L,R]里面的数全都加上W: 2.  2     将a数组变为其前缀 ...

  2. [CF1204E]Natasha,Sasha and the Prefix Sums 题解

    前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...

  3. 4.4 CUDA prefix sum一步一步优化

    1. Prefix Sum 前缀求和由一个二元操作符和一个输入向量组成,虽然名字叫求和,但操作符不一定是加法.先解释一下,以加法为例: 第一行是输入,第二行是对应的输出.可以看到,Output[1] ...

  4. 牛客多校第十场-D- Rikka with Prefix Sum

    链接:https://www.nowcoder.com/acm/contest/148/D来源:牛客网 Prefix Sum is a useful trick in data structure p ...

  5. Rikka with Prefix Sum(组合数学)

    Rikka with Prefix Sum 题目描述 Prefix Sum is a useful trick in data structure problems. For example, giv ...

  6. Ural 1248 Sequence Sum 题解

    目录 Ural 1248 Sequence Sum 题解 题意 题解 程序 Ural 1248 Sequence Sum 题解 题意 给定\(n\)个用科学计数法表示的实数\((10^{-100}\s ...

  7. Rikka with Prefix Sum

    Rikka with Prefix Sum 题目 https://www.nowcoder.com/acm/contest/148/D 题目有三个操作 l到r都添加一个数 取一次前缀和 查询区间和 这 ...

  8. Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)

    Problem  Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...

  9. LeetCode Continuous Subarray Sum 题解 同余前缀和 Hash表

    文章目录 题意 思路 特殊情况k=0 Source Code 1 Source Code 2 题意 给定一个数组和一个整数k,返回是否存在一个长度至少为2的连续子数组的和为k的倍数. 思路 和上一篇博 ...

  10. Hdoj 1003.Max Sum 题解

    Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...

随机推荐

  1. Android掌控WiFi不完全指南

    前言 如果想要对针对WiFi的攻击进行监测,就需要定期获取WiFi的运行状态,例如WiFi的SSID,WiFi强度,是否开放,加密方式等信息,在Android中通过WiFiManager来实现 WiF ...

  2. AI之强化学习、无监督学习、半监督学习和对抗学习

    1.强化学习 @ 目录 1.强化学习 1.1 强化学习原理 1.2 强化学习与监督学习 2.无监督学习 3.半监督学习 4.对抗学习 强化学习(英语:Reinforcement Learning,简称 ...

  3. Nginx配置-1

    1.绑定nginx到指定cpu [root@nginx conf.d]# vim /apps/nginx/conf/nginx.conf worker_processes 2; worker_cpu_ ...

  4. maven的下载、安装、配置,idea中配置Maven

    下载 下载链接: 点击下载地址 : 找到:对应版本的包下载 安装 下载后的压缩包解压出来,然后将解压后的包放到日常安装软件的位置即安装成功,当然取决于个人意愿,也可以不移动. 打开安装包后的目录结构简 ...

  5. 配置MSTP功能示例

    组网需求 在一个复杂的网络中,网络规划者由于冗余备份的需要,一般都倾向于在设备之间部署多条物理链路,其中一条作主用链路,其他链路作备份.这样就难免会形成环形网络,若网络中存在环路,可能会引起广播风暴和 ...

  6. Scrum 框架的四个会议还适用于哪些敏捷方法?

    敏捷转型需要深入理解概念和思维,团队才能更好的进行实践.本文将通过介绍Scrum框架的四个会议还适用于哪些敏捷方法,来让大家更直观的理解敏捷转型. 本文整理自:PingCode 敏捷大学,转载请注明链 ...

  7. 私藏!资深数据专家SQL效率优化技巧 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 本文地址:https://www.showmeai.tech/artic ...

  8. 2.6:Python数据存取-文件、文件夹及目录、数据库

    一.Python文件读写 1.文件的打开模式 <class '_io.TextIOWrapper'>和<class '_io.BufferedReader'>.python使用 ...

  9. 【Hadoop学习】下:MapReduce程序编写、Hadoop序列化、框架原理、Yarn组件、设置队列

    一.MapReduce概述 1.定义 编程框架,组成分布式运算程序,运行在集群上 2.特点 优点:易于编程.扩展性.容错性(内部完成).海量数据离线处理 缺点:非实时.不擅长流式计算.不擅长DAG有向 ...

  10. rate-limit 一款 java 开源渐进式分布式限流框架使用介绍

    项目简介 rate-limit 是一个为 java 设计的渐进式限流工具. 目的是为了深入学习和使用限流,后续将会持续迭代. 特性 渐进式实现 支持独立于 spring 使用 支持整合 spring ...