CF链接:Least Prefix Sum

Luogu链接:Least Prefix Sum


$ {\scr \color {CornflowerBlue}{\text{Solution}}} $

先来解释一下题意:

给定一个数组,问最少把多少个数变成相反数,使得$ \forall \cal{i}$,$ \sum_{k=1}^i a_k$ $ \le$ $ \sum_{k=1}^m a_k$

发现对于所有数据点,$ \cal{n} \le 2 \times 10^5$,说明需要 $ Ο(\cal{n \log n}) $ 或者 $ O(\cal{n}) $的算法。

分析一下题目,发现要分成$ \cal{i} > \cal{m}$ 与$ \cal{i} < \cal{m}$两种情况分类讨论

  • 当 $\cal{i}$ $ > \cal{m}$时:

什么时候才能使$ \sum_{k=1}^i a_k$ $ \le$ $ \sum_{k=1}^m a_k$ 成立呢?

是不是只要使新加的每一段都小于等于0就行了?($ \sum_{k=m}^i a_k$ $ \le$ $ 0$)

也很好证明:一个数($ \sum_{k=1}^m a_k$)加上一个小于等于0的数($ \sum_{k={m+1}}^i a_k$),一定不大于原数。

  • 当 $\cal{i}$ $ < \cal{m}$时:

同理,只要使后加的每一段都小于等于0就行了($ \sum_{k=i}^i a_k$ $ \ge$ $ 0$)

也很好证明:一个数($ \sum_{k=1}^i a_k$)加上一个大于等于0的数($ \sum_{k=i}^m a_k$),一定不小于原数。

而且,由于这两种情况类似(博主太懒),那就只考虑当 $\cal{i}$ $ > \cal{m}$的情况吧。

问题已经转化完了,接下来怎么办?

第一眼想到的是贪心。

设当前要取第$\cal{i}$个。

有一个不成熟的贪心:如果目前累加和加上$a_i$还是小于等于$0$的,就加上$a_i$,如果大于$0$了,就把$a_i$取反,$ ans+1$。

Hack数据

5 1
1 -1000 999 2 100

我们只要把999 变成-999就行了,但如果按上面贪心方法,我们要把2,100都改变!

那么贪心就不可以用了吗?

有个神奇的东西交叫反悔贪心!

简单说一下:对于当前不是最优的情况,留到后面重新选择。

我们肯定要让每次改变值后,获得综合最小的值,但当前的选择又不一定最有优。

我们可以用一个优先队列维护,到了每次要改的时候,从优先队列中选出一个收益最大(使目前累加和最大或最小)的值修改。

注意开$ \cal{long long}$并且清空优先队列!

Code(赛时代码,过丑见谅QwQ):

#include<bits/stdc++.h>
#define L long long
using namespace std;
L a[200005];
priority_queue<L,vector<L>,greater<L> > q;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
while(!q.empty()) q.pop();
int n,m,ans=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
if(n==1)
{
printf("0\n");
continue;
}
if(m==1)
{
L mu=0;
for(int i=m+1;i<=n;i++)
{
if(a[i]>=0) mu+=a[i];
else if(a[i]<0 && mu+a[i]>=0)
{
q.push(a[i]);
mu+=a[i];
}
else
{
ans++;
q.push(a[i]);
mu+=a[i];
mu-=2*q.top();
q.pop();
}
}
printf("%d\n",ans);
continue;
}
L mu=0;
for(int i=m+1;i<=n;i++)
{
if(a[i]>=0) mu+=a[i];
else if(a[i]<0 && mu+a[i]>=0)
{
q.push(a[i]);
mu+=a[i];
}
else
{
ans++;
q.push(a[i]);
mu+=a[i];
mu-=2*q.top();
q.pop();
}
}
while(!q.empty()) q.pop();
mu=0;
for(int i=m;i>=2;i--)
{
if(a[i]<=0) mu+=a[i];
else if(a[i]>0 && mu+a[i]<=0)
{
q.push(-a[i]);
mu+=a[i];
}
else
{
ans++;
q.push(-a[i]);
mu+=a[i];
mu+=2*q.top();
q.pop();
}
}
printf("%d\n",ans);
}
return 0;
}

CF1779C Least Prefix Sum 题解的更多相关文章

  1. 牛客网暑期ACM多校训练营(第十场)D Rikka with Prefix Sum (数学)

    Rikka with Prefix Sum 题意: 给出一个数组a,一开始全为0,现在有三种操作: 1.  1 L R W,让区间[L,R]里面的数全都加上W: 2.  2     将a数组变为其前缀 ...

  2. [CF1204E]Natasha,Sasha and the Prefix Sums 题解

    前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...

  3. 4.4 CUDA prefix sum一步一步优化

    1. Prefix Sum 前缀求和由一个二元操作符和一个输入向量组成,虽然名字叫求和,但操作符不一定是加法.先解释一下,以加法为例: 第一行是输入,第二行是对应的输出.可以看到,Output[1] ...

  4. 牛客多校第十场-D- Rikka with Prefix Sum

    链接:https://www.nowcoder.com/acm/contest/148/D来源:牛客网 Prefix Sum is a useful trick in data structure p ...

  5. Rikka with Prefix Sum(组合数学)

    Rikka with Prefix Sum 题目描述 Prefix Sum is a useful trick in data structure problems. For example, giv ...

  6. Ural 1248 Sequence Sum 题解

    目录 Ural 1248 Sequence Sum 题解 题意 题解 程序 Ural 1248 Sequence Sum 题解 题意 给定\(n\)个用科学计数法表示的实数\((10^{-100}\s ...

  7. Rikka with Prefix Sum

    Rikka with Prefix Sum 题目 https://www.nowcoder.com/acm/contest/148/D 题目有三个操作 l到r都添加一个数 取一次前缀和 查询区间和 这 ...

  8. Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)

    Problem  Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...

  9. LeetCode Continuous Subarray Sum 题解 同余前缀和 Hash表

    文章目录 题意 思路 特殊情况k=0 Source Code 1 Source Code 2 题意 给定一个数组和一个整数k,返回是否存在一个长度至少为2的连续子数组的和为k的倍数. 思路 和上一篇博 ...

  10. Hdoj 1003.Max Sum 题解

    Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...

随机推荐

  1. JQuery中的DataTables表格插件

    一.DataTables表格插件的简介 DataTables是一个jQuery的表格插件.它具有以下特点: 自动分页处理 即时表格数据过滤 数据排序以及数据类型自动检测 自动处理列宽度 可通过CSS定 ...

  2. MySQL索引报错

    今天在MySQL 5.7版本的数据库中导库InnoDB表字段长度时遇到了"ERROR 1071 (42000): Specified key was too long; max key le ...

  3. Sublime Text - Linux Package Manager Repositories

    Linux Package Manager Repositories http://www.sublimetext.com/docs/linux_repositories.html Sublime T ...

  4. 2022NISACTF--WEB

    easyssrf 打开题目,显示的是 尝试输入, 发现输入flag有东西 读取文件 访问下一个网站 读取文件 不能以file开头 直接伪协议,base64解码 checkIn 奇怪的unicode编码 ...

  5. Codeforces Round #812 (Div. 2) D. Tournament Countdown(交互题)

    记录一下第一次写交互题 题目大意:一共有1<<n个人参加一场竞标赛,需要你通过比较两人的胜场来判断谁晋级,最终获得第一名 最多1/3*2^(n+1)次询问,每次询问query(a,b),如 ...

  6. BERT模型源码解析

    BERT模型源码解析 modeling.py 目录 属性 类 class BertConfig(object)   BERT模型配置参数类 class BertModel(object)   BERT ...

  7. 链表实现-回文palindrome判断

    1.数字回文判断(逆转,分离未位,砍掉个位,保存原来) s = s * 10 + a%10 a = a/10 2.字符串判断回文 package main //思路: 开发一个栈来来存放链表的上半段f ...

  8. 程序员面试干货:漫谈计算机网络:数据链路层 ----- 数据链路路在何方? --从点对点数据传输 到 "广泛撒网,重点捕获"的局域网

    面试答不上?计网很枯燥? 听说你学习 计网 每次记了都会忘? 不妨抽时间和我一起多学学它 深入浅出,用你的空闲时间来探索计算机网络的硬核知识! 博主的上篇连载文章<初识图像处理技术> 图像 ...

  9. 高效率开发Web安全扫描器之路(一)

    一.背景 经常看到一些SRC和CNVD上厉害的大佬提交了很多的漏洞,一直好奇它们怎么能挖到这么多漏洞,开始还以为它们不上班除了睡觉就挖漏洞,后来有机会认识了一些大佬,发现它们大部分漏洞其实是通过工具挖 ...

  10. Isaac SDK & Sim 环境

    Isaac 是 NVIDIA 开放的机器人平台.其 Isaac SDK 包括以下内容: Isaac Apps: 各种机器人应用示例,突出 Engine 特性或专注 GEM 功能 Isaac Engin ...