0 why: 问题来源

0.1 网络编程流程

//创建socket
int s = socket(AF_INET, SOCK_STREAM, 0);
//绑定IP地址和端口号port
bind(s, ...)
//监听客户端连接
listen(s, ...)
//接受客户端连接
int c = accept(s, ...)
//接收客户端数据
recv(c, ...);
//处理数据
operation(...)

0.2 内核接收网络数据过程

创建socket时,操作系统会创建一个由文件系统管理的socket对象。这个socket对象包含了发送缓冲区、接收缓冲区、等待队列等成员。等待队列指向所有需要等待该socket事件的进程。



新的文件描述符fd都会插入等待队列中,等到有数据到来时,等待序列会唤醒一个进程来处理数据。

0.3 问题来源

如何同时监视多个socket的数据?

1 解决方案之select模式

预先传入一个socket列表,如果列表中的socket都没有数据,挂起进程,直到有一个socket收到数据,唤醒进程。

int s = socket(AF_INET, SOCK_STREAM, 0);
bind(s, ...)
listen(s, ...) int fds[] = ;//存放需要监听的socket while(1){
int n = select(..., fds, ...)
for(int i=0; i < fds.count; i++){
if(FD_ISSET(fds[i], ...)){
//fds[i]的数据处理
}
}
}

这里需要注意的问题是:select查看是否有数据输入,需要进行遍历所有的socket;而在进程唤醒后,进程一脸懵逼,只知道有数据来了,却不知道是谁的数据,因此需要再次进行一次遍历,找到数据来自于哪个socket。这种多次遍历,每次都要将整个fds列表传递给内核,开销很大,因此我们需要改进一下。

2 what: 解决方案之epoll模式

epoll模式相比于select模式,最大的改进在于增加了一个中间环节“就绪列表”,还有就是分离了“socket插入到等待列表”和“阻塞等待事件到来”这两个过程。

2.1 功能分离

每次调用select都需要这两步操作,然而大多数应用场景中,需要监视的socket相对固定,并不需要每次都修改。epoll将这两个操作分开,先用epoll_ctl维护等待队列,再调用epoll_wait阻塞进程。

注意:epoll_wait方法不是使用循环的方式看是否有就绪时间,而是epoll_wait()一直阻塞直到:fd产生事件 / 被信号处理函数打断 / 超时。

int s = socket(AF_INET, SOCK_STREAM, 0);
bind(s, ...)
listen(s, ...) int epfd = epoll_create(...);
epoll_ctl(epfd, ...); //将所有需要监听的socket添加到epfd中 while(1){
int n = epoll_wait(...)
for(接收到数据的socket){
//处理
}
}

2.2 增加中间环节“就绪列表”

select低效的另一个原因在于程序不知道哪些socket收到数据,只能一个个遍历。如果内核维护一个“就绪列表”,引用已就绪数据的socket,就能避免遍历。

3 how: 如何用?

3.1 创建epoll

int epoll_create(int size);

在最初的epoll_create()实现中,size参数将调用者希望添加到的文件描述符的数量告知内核。epoll实例。内核使用该信息作为内部数据结构初始分配空间的提示,事件。 (如果有必要,如果调用方的使用超出了大小提示,内核将分配更多空间。)如今,此提示不再必需(内核无需提示即可动态调整所需数据结构的大小),但是大小必须仍大于零,以便当新的epoll应用程序在较旧的内核上运行时,请确保向后兼容。

3.2 操作事件

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

向 epfd 对应的内核epoll 实例添加、修改或删除对 fd 上事件 event 的监听。op 可以为 EPOLL_CTL_ADD, EPOLL_CTL_MOD, EPOLL_CTL_DEL 分别对应的是添加新的事件,修改文件描述符上监听的事件类型,从实例上删除一个事件。

3.3 监听事件

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

当 timeout 为 0 时,epoll_wait 永远会立即返回。而 timeout 为 -1 时,epoll_wait 会一直阻塞直到任一已注册的事件变为就绪。当 timeout 为一正整数时,epoll 会阻塞直到计时 timeout 毫秒终了或已注册的事件变为就绪。因为内核调度延迟,阻塞的时间可能会略微超过 timeout 毫秒。

4 参考

https://www.cnblogs.com/Hijack-you/p/13057792.html

https://www.agedcat.com/programming_language/cpp/525.html

https://blog.csdn.net/zhoumuyu_yu/article/details/112472419

IO多路复用epoll的更多相关文章

  1. 非阻塞套接字编程, IO多路复用(epoll)

    非阻塞套接字编程: server端 import socket server = socket.socket() server.setblocking(False) server.bind(('', ...

  2. IO多路复用之epoll总结

    1.基本知识 epoll是在2.6内核中提出的,是之前的select和poll的增强版本.相对于select和poll来说,epoll更加灵活,没有描述符限制.epoll使用一个文件描述符管理多个描述 ...

  3. IO多路复用之epoll

    1.基本知识 epoll是在2.6内核中提出的,是之前的select和poll的增强版本.相对于select和poll来说,epoll更加灵活,没有描述符限制.epoll使用一个文件描述符管理多个描述 ...

  4. 【python】-- IO多路复用(select、poll、epoll)介绍及实现

    IO多路复用(select.poll.epoll)介绍及select.epoll的实现 IO多路复用中包括 select.pool.epoll,这些都属于同步,还不属于异步 一.IO多路复用介绍 1. ...

  5. IO多路复用(select、poll、epoll)介绍及select、epoll的实现

    IO多路复用(select.poll.epoll)介绍及select.epoll的实现 IO多路复用中包括 select.pool.epoll,这些都属于同步,还不属于异步 一.IO多路复用介绍 1. ...

  6. 异步、非阻塞和IO多路复用总结

    Nginx是并发处理框架的代表者,很多后台业务都会放在Nginx容器中运行,以实现高吞吐,而Nginx能够支持高并发也是由于使用了异步非阻塞处理模型,本文将用通俗的话讲解异步.同步.阻塞.非阻塞的区别 ...

  7. nginx 多进程 + io多路复用 实现高并发

    一.nginx 高并发原理 简单介绍:nginx 采用的是多进程(单线程) + io多路复用(epoll)模型 实现高并发 二.nginx 多进程 启动nginx 解析初始化配置文件后会 创建(for ...

  8. 聊聊redis单线程为什么能做到高性能和io多路复用到底是个什么鬼

    1:io多路复用epoll  io多路复用简单来说就是一个线程处理多个网络请求 我们知道epoll in 的事件触发是可读了,这个比较好理解,比如一个连接过来,或者一个数据发送过来了,那么in事件就触 ...

  9. 聊聊IO多路复用之select、poll、epoll详解

    本文转载自: http://mp.weixin.qq.com/s?__biz=MzAxODI5ODMwOA==&mid=2666538922&idx=1&sn=e6b436ef ...

随机推荐

  1. 【第五课】VIM编辑器(学习笔记)

    4月10日学习笔记打卡

  2. 《Streaming Systems》第一章: Streaming 101

    数据的价值在其产生之后,将随着时间的流逝逐渐降低.因此,为了获得最大化的数据价值,尽可能实时.快速地处理新产生的数据就显得尤为重要.实时数据处理将在越来越多的场景中体现出更大的价值所在 -- 实时即未 ...

  3. C++进阶-3-5-set/multiset容器

    C++进阶-3-5-set/multiset容器 1 #include<iostream> 2 #include<set> 3 using namespace std; 4 5 ...

  4. 探索ABP的EventHub解决方案

    在上一章中,我们构建了一个简单的全栈 Web 应用程序,我们已经看到了使用 ABP 框架开发应用的典型流程,在接下来,我们将使用 ABP 框架创建更高级的应用程序. 给出具有现实世界复杂性的例子并不容 ...

  5. selenium模块使用详解、打码平台使用、xpath使用、使用selenium爬取京东商品信息、scrapy框架介绍与安装

    今日内容概要 selenium的使用 打码平台使用 xpath使用 爬取京东商品信息 scrapy 介绍和安装 内容详细 1.selenium模块的使用 # 之前咱们学requests,可以发送htt ...

  6. sklearn机器学习-特征提取1

    scikit-learn机器学习的特征提取部分较多nlp内容,故学到一半学不下去,看完nltk再来补上 scikit-learn机器学习的特征提取这一章感觉讲的不是特别好,所以会结合着来看 首先是Di ...

  7. 设计模式---单例模式,pickle模块

    设计模式---单例模式 简介 单例模式(Singleton Pattern) 是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实 例存在.当你希望在整个系统中,某个类只能出现一个实例时 ...

  8. 【深入理解计算机系统CSAPP】第六章 存储器层次结构

    6 存储器层次结构 存储器系统(memory system)是一个具有不同容量.成本和访问时间的存储设备的层次结构.CPU 寄存器保存着最常用的数据.靠近 CPU 的小的.快速的高速缓存存储器(cac ...

  9. Python数据分析--Numpy常用函数介绍(4)--Numpy中的线性关系和数据修剪压缩

    摘要:总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的.作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出. 前一 ...

  10. DCM:一个能够改善所有应用数据交互场景的中间件新秀

    摘要:几乎所有涉及应用数据交互的场景都可以通过DCM来改善应用结构,提升开发与计算效率. 本文分享自华为云社区<DCM:中间件家族迎来新成员>,作者: 石臻臻的杂货铺. DCM是什么 现代 ...