背包问题学习笔记 / Dynamic Programming(updating)
01背包问题
朴素版:(二维数组)
状态表示: dp[i][j]:从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案(n:物品数量,m:最大体积)
状态计算: dp[i][j] = max ( dp[i-1][j] , dp[i-1][j-vi]+wi ) // 由含i和不含i两个子集合计算而来(vi:物品体积,wi:物品价值)
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
if(v[i] >= j) dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);
}
}
空间优化版:(滚动数组,二维数组优化至一维)
状态表示:dp[j]:在外循环的第i层时,表示从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,n层循环后,dp[m]就是最终答案
状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi ) // 由含i和不含i两个子集合计算而来
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N]; void keyCode()
{
for(int i = 1; i <= n; i++)
// 反向遍历, 否则dp[j-v[i]]可能为dp[i][j-v[i]](用更新后的值来更新导致出错)
for(int j = m; j >= v[i]; j--)
dp[j] = max(dp[j], dp[j-v[i]] + w[i]); }
完全背包问题
朴素版:(二维数组)
状态表示:dp[i][j]:从前i种物品中选择(每种物品可以任选个数)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案
状态计算:dp[i][j] = max ( dp[i-1][j] , dp[i][j-vi]+wi )
证明:dp[i][j] = max ( dp[i-1][j] , dp[i-1][j-vi]+wi , dp[i-1][j-2vi]+2wi , dp[i-1][j-3vi]+3wi , ...... )
dp[i][j-vi] = max ( dp[i-1][j-vi] , dp[i-1][j-2vi]+wi , dp[i-1][j-3vi]+2wi , ...... )
Thus,dp[i][j-vi]+wi = max ( dp[i-1][j-vi]+wi , dp[i-1][j-2vi]+2wi , dp[i-1][j-3vi]+3wi , ...... )
Thus,dp[i][j] = max ( dp[i-1][j] , dp[i][j-vi]+wi )
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
if(j >= v[i]) dp[i][j] = max(dp[i][j], dp[i][j-v[i]] + w[i]);
}
}
空间优化版:(滚动数组,二维数组优化至一维)
状态表示:dp[j]:在外循环的第i层时,表示从前i种物品中选择(每种物品可以任选个数)且总体积不超过j的集合的最大价值,n层循环后,dp[m]就是最终答案
状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi ) // 由含i和不含i两个子集合计算而来
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N]; void keyCode()
{
for(int i = 1; i <= n; i++)
// 正向遍历, 使得dp[j-v[i]]为dp[i][j-v[i]]
for(int j = v[i]; j <= m; j++)
dp[j] = max(dp[j], dp[j-v[i]] + w[i]); }
多重背包问题
朴素版:(二维数组+三重循环)
状态表示:dp[i][j]:从前i种物品中选择(每种物品最多选择si个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案
状态计算:dp[i][j] = max ( dp[i-1][j],dp[i-1][j-v]+w,dp[i-1][j-2v]+2w,...,dp[i-1][j-sv]+sw )
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], s[S];
int dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
for(int k = 0; k <= s[i] && k * v[i] <= j; k++)
dp[i][j] = max(dp[i][j], dp[i-1][j-k*v[i]] + k*w[i]);
}
优化版:(一维数组+二重循环)
二进制优化:对于每种物品,将其按2的次幂大小拆分合并,如s[i]=12时,方案为:第1个物品合并,第2~3个物品合并,第4~7个物品合并,第8~12个物品合并(1,2,4,5)。这样,就将多重背包问题转化成01背包问题
状态表示:dp[j]:在外循环的第i层时,表示从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,n层循环后(n为问题转化后的新n),dp[m]就是最终答案
状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi )
核心代码:
int n, m;
int v[N], w[N], dp[M]; // N:maxn * logmaxs void keyCode()
{
int cnt = 0;
for(int i = 1; i <= n; i++)
{
int a, b, s; // vi, wi, si
cin >> a >> b >> s;
int p = 1;
while(p <= s)
{
cnt ++;
v[cnt] = a * p, w[cnt] = b * p;
s -= p, p *= 2;
}
if(s > 0)
{
cnt ++;
v[cnt] = a * s, w[cnt] = b * s;
}
}
n = cnt; // n --> 问题转化后的新n
for(int i = 1; i <= n; i++)
for(int j = m; j >= v[i]; j--) // 反向遍历
dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
}
分组背包问题
朴素版:(二维数组)
状态表示:dp[i][j]:从前i组物品中选择(每组物品中只能选择0或1个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案
状态计算:dp[i][j] = max ( dp[i-1][j],dp[i-1][j-vi,1]+wi,1,dp[i-1][j-vi,2]+wi,2,dp[i-1][j-vi,3]+wi,3,... )
核心代码:
int n, m; // n:物品数量, m:最大体积
int s[N], v[N][S], w[N][S];
int dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
{
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
for(int k = 1; k <= s[i]; k++)
if(v[i][k] <= j)
dp[i][j] = max(dp[i][j], dp[i-1][j-v[i][k]] + w[i][k]);
}
}
}
空间优化版:(滚动数组,二维数组优化至一维)
int n, m; // n:物品数量, m:最大体积
int s[N], v[N][S], w[N][S];
int dp[M]; void keyCode()
{
for(int i = 1; i <= n; i++)
{
for(int j = m; j >= 0; j--) // 反向遍历
{
for(int k = 1; k <= s[i]; k++)
if(v[i][k] <= j)
dp[j] = max(dp[j], dp[j-v[i][k]] + w[i][k]);
}
}
}
背包问题学习笔记 / Dynamic Programming(updating)的更多相关文章
- angular2 学习笔记 ( Dynamic Component 动态组件)
更新 2018-02-07 详细讲一下 TemplateRef 和 ViewContainerRef 的插入 refer : https://segmentfault.com/a/1190000008 ...
- DP背包问题学习笔记及系列练习题
01 背包: 01背包:在M件物品中取出若干件物品放到背包中,每件物品对应的体积v1,v2,v3,....对应的价值为w1,w2,w3,,,,,每件物品最多拿一件. 和很多DP题一样,对于每一个物品, ...
- 动态规划 Dynamic Programming 学习笔记
文章以 CC-BY-SA 方式共享,此说明高于本站内其他说明. 本文尚未完工,但内容足够丰富,故提前发布. 内容包含大量 \(\LaTeX\) 公式,渲染可能需要一些时间,请耐心等待渲染(约 5s). ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十八章:立方体贴图
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十八章:立方体贴图 代码工程地址: https://github.c ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader) 代码工程 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二) 代码工程地址: https:/ ...
- Dynamic CRM 2013学习笔记 系列汇总
这里列出所有 Dynamic CRM 2013学习笔记 系列文章,方便大家查阅.有任何建议.意见.需要,欢迎大家提交评论一起讨论. 本文原文地址: Dynamic CRM 2013学习笔记 系列汇总 ...
- IOS学习笔记之关键词@dynamic
IOS学习笔记之关键词@dynamic @dynamic这个关键词,通常是用不到的. 它与@synthesize的区别在于: 使用@synthesize编译器会确实的产生getter和setter方法 ...
- Dynamic CRM 2013学习笔记(一)插件输入实体参数解析
1. 问题描述 最近新建了一个post事件的插件,传入的参数处理如下: 1: if (context.InputParameters.Contains("Target") &a ...
随机推荐
- mysql二进制日志和mysql备份工具介绍以及日志恢复
mysql备份: 三种备份方式 冷备:数据库停机,在进行备份 热备:lock table锁表,read 数据库只可以读不能写,在备份 温备:备份时数据库正常运行 备份类型:完整备份:全部备份,部分 ...
- 交互式 .Net 容器版
背景介绍 在之前的文章 - 交互式 .Net 中已经介绍了什么是交互式 .Net,文中是通过 Visual Studio Code 插件的方式实现交互式 .Net 的.现在,我们将使用容器的方式实现交 ...
- WSL2+Docker+IDEA一站式开发调试
WSL2+Docker+IDEA一站式开发调试 前言 我们知道,Docker是一个容器引擎:对于开发者来说,使用Dokcer容器部署各种开发需要的中间件(比如myql.redis)会非常简单方便: ...
- MySQL执行计划explain
一.简介 分析查询慢的原因,在查询语句前加explain即可.如: 二.输出格式 2.0 测试数据 # 表user_info CREATE TABLE `user_info` ( `id` bigin ...
- 141. Linked List Cycle - LeetCode
Question 141. Linked List Cycle Solution 题目大意:给一个链表,判断是否存在循环,最好不要使用额外空间 思路:定义一个假节点fakeNext,遍历这个链表,判断 ...
- 基于surging网络组件多协议适配的平台化发展
前言 Surging 发展已经有快6年的时间,经过这些年的发展,功能框架也趋于成熟,但是针对于商业化需求还需要不断的打磨,前段时间客户找到我想升级成平台化,针对他的需求我 ...
- 深入解读SQL的聚集函数
摘要:本文从基本聚集操作入手,介绍常用的SQL语法,以及一些扩展的聚集功能,同时会讲到在GaussDB(DWS)里聚集相关的一些优化思路. 本文分享自华为云社区<GaussDB(DWS) SQL ...
- IIS7 网站发布常见报错问题解决方案汇总
本文实例为大家分享了IIS7 网站发布常见问题,以及五种问题的解决方法,供大家参考,具体内容如下: 1.不是有效的Win32位应用程序 : 解决方案: 1).进入应用程序池=>选中网站=> ...
- 微信小程序使用echarts遇到的问题
问题1:ec-canvas出现上下滑动页面会漂移 解决方法:在标签内加 force-use-old-canvas="true" 问题2:echarts的tooltip会超出边界 解 ...
- Linux常用命令-创建用户修改密码-useradd
命令简介 useradd/userdel 创建新用户/删除用户,需要管理员权限操作. 在创建用户时,如果不配置密码,用户的默认密码是不可用的,所以,useradd命令一般与passwd命令配合使用,下 ...