01背包问题

    朴素版:(二维数组)

状态表示: dp[i][j]:从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案(n:物品数量,m:最大体积)

状态计算: dp[i][j] = max ( dp[i-1][j] , dp[i-1][j-vi]+wi )  // 由含i和不含i两个子集合计算而来(vi:物品体积,wi:物品价值)

核心代码:

int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
if(v[i] >= j) dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);
}
}

空间优化版:(滚动数组,二维数组优化至一维)

  状态表示:dp[j]:在外循环的第i层时,表示从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,n层循环后,dp[m]就是最终答案

  状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi )  // 由含i和不含i两个子集合计算而来

  核心代码:

int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N]; void keyCode()
{
for(int i = 1; i <= n; i++)
// 反向遍历, 否则dp[j-v[i]]可能为dp[i][j-v[i]](用更新后的值来更新导致出错)
for(int j = m; j >= v[i]; j--)
dp[j] = max(dp[j], dp[j-v[i]] + w[i]); }

完全背包问题

朴素版:(二维数组)

  状态表示:dp[i][j]:从前i种物品中选择(每种物品可以任选个数)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案

  状态计算:dp[i][j] = max ( dp[i-1][j] , dp[i][j-vi]+wi )

    证明:dp[i][j] = max ( dp[i-1][j] , dp[i-1][j-vi]+w, dp[i-1][j-2vi]+2wi , dp[i-1][j-3vi]+3w, ...... )

       dp[i][j-vi] = max (               dp[i-1][j-vi] ,      dp[i-1][j-2vi]+w,   dp[i-1][j-3vi]+2w,  ...... )

       Thus,dp[i][j-vi]+wi = max ( dp[i-1][j-vi]+wi , dp[i-1][j-2vi]+2w, dp[i-1][j-3vi]+3w,  ...... )

       Thus,dp[i][j] = max ( dp[i-1][j] , dp[i][j-vi]+wi )

  核心代码:

int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
if(j >= v[i]) dp[i][j] = max(dp[i][j], dp[i][j-v[i]] + w[i]);
}
}

空间优化版:(滚动数组,二维数组优化至一维)

  状态表示:dp[j]:在外循环的第i层时,表示从前i种物品中选择(每种物品可以任选个数)且总体积不超过j的集合的最大价值,n层循环后,dp[m]就是最终答案

  状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi )  // 由含i和不含i两个子集合计算而来

  核心代码:

int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N]; void keyCode()
{
for(int i = 1; i <= n; i++)
// 正向遍历, 使得dp[j-v[i]]为dp[i][j-v[i]]
for(int j = v[i]; j <= m; j++)
dp[j] = max(dp[j], dp[j-v[i]] + w[i]); }

多重背包问题

朴素版:(二维数组+三重循环)

  状态表示:dp[i][j]:从前i种物品中选择(每种物品最多选择si个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案

  状态计算:dp[i][j] = max ( dp[i-1][j],dp[i-1][j-v]+w,dp[i-1][j-2v]+2w,...,dp[i-1][j-sv]+sw )

  核心代码:

int n, m; // n:物品数量, m:最大体积
int v[N], w[N], s[S];
int dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
for(int k = 0; k <= s[i] && k * v[i] <= j; k++)
dp[i][j] = max(dp[i][j], dp[i-1][j-k*v[i]] + k*w[i]);
}

优化版:(一维数组+二重循环)

  二进制优化:对于每种物品,将其按2的次幂大小拆分合并,如s[i]=12时,方案为:第1个物品合并,第2~3个物品合并,第4~7个物品合并,第8~12个物品合并(1,2,4,5)。这样,就将多重背包问题转化成01背包问题

  状态表示:dp[j]:在外循环的第i层时,表示从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,n层循环后(n为问题转化后的新n),dp[m]就是最终答案

  状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi )

  核心代码:

int n, m;
int v[N], w[N], dp[M]; // N:maxn * logmaxs void keyCode()
{
int cnt = 0;
for(int i = 1; i <= n; i++)
{
int a, b, s; // vi, wi, si
cin >> a >> b >> s;
int p = 1;
while(p <= s)
{
cnt ++;
v[cnt] = a * p, w[cnt] = b * p;
s -= p, p *= 2;
}
if(s > 0)
{
cnt ++;
v[cnt] = a * s, w[cnt] = b * s;
}
}
n = cnt; // n --> 问题转化后的新n
for(int i = 1; i <= n; i++)
for(int j = m; j >= v[i]; j--) // 反向遍历
dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
}

 

分组背包问题

朴素版:(二维数组)

  状态表示:dp[i][j]:从前i组物品中选择(每组物品中只能选择0或1个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案

  状态计算:dp[i][j] = max ( dp[i-1][j],dp[i-1][j-vi,1]+wi,1,dp[i-1][j-vi,2]+wi,2,dp[i-1][j-vi,3]+wi,3,... )

  核心代码:

int n, m; // n:物品数量, m:最大体积
int s[N], v[N][S], w[N][S];
int dp[N][M]; void keyCode()
{
for(int i = 1; i <= n; i++)
{
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
for(int k = 1; k <= s[i]; k++)
if(v[i][k] <= j)
dp[i][j] = max(dp[i][j], dp[i-1][j-v[i][k]] + w[i][k]);
}
}
}

    空间优化版:(滚动数组,二维数组优化至一维)

int n, m; // n:物品数量, m:最大体积
int s[N], v[N][S], w[N][S];
int dp[M]; void keyCode()
{
for(int i = 1; i <= n; i++)
{
for(int j = m; j >= 0; j--) // 反向遍历
{
for(int k = 1; k <= s[i]; k++)
if(v[i][k] <= j)
dp[j] = max(dp[j], dp[j-v[i][k]] + w[i][k]);
}
}
}

背包问题学习笔记 / Dynamic Programming(updating)的更多相关文章

  1. angular2 学习笔记 ( Dynamic Component 动态组件)

    更新 2018-02-07 详细讲一下 TemplateRef 和 ViewContainerRef 的插入 refer : https://segmentfault.com/a/1190000008 ...

  2. DP背包问题学习笔记及系列练习题

    01 背包: 01背包:在M件物品中取出若干件物品放到背包中,每件物品对应的体积v1,v2,v3,....对应的价值为w1,w2,w3,,,,,每件物品最多拿一件. 和很多DP题一样,对于每一个物品, ...

  3. 动态规划 Dynamic Programming 学习笔记

    文章以 CC-BY-SA 方式共享,此说明高于本站内其他说明. 本文尚未完工,但内容足够丰富,故提前发布. 内容包含大量 \(\LaTeX\) 公式,渲染可能需要一些时间,请耐心等待渲染(约 5s). ...

  4. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十八章:立方体贴图

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十八章:立方体贴图 代码工程地址: https://github.c ...

  5. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader)

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader) 代码工程 ...

  6. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二)

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二) 代码工程地址: https:/ ...

  7. Dynamic CRM 2013学习笔记 系列汇总

    这里列出所有 Dynamic CRM 2013学习笔记 系列文章,方便大家查阅.有任何建议.意见.需要,欢迎大家提交评论一起讨论. 本文原文地址: Dynamic CRM 2013学习笔记 系列汇总 ...

  8. IOS学习笔记之关键词@dynamic

    IOS学习笔记之关键词@dynamic @dynamic这个关键词,通常是用不到的. 它与@synthesize的区别在于: 使用@synthesize编译器会确实的产生getter和setter方法 ...

  9. Dynamic CRM 2013学习笔记(一)插件输入实体参数解析

      1. 问题描述 最近新建了一个post事件的插件,传入的参数处理如下: 1: if (context.InputParameters.Contains("Target") &a ...

随机推荐

  1. CentOS 并没有死,Rocky Linux 让其重生

    点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 近日,CentOS 官方发文称CentOS Stream ...

  2. 关于前端ajax请求获取数据成功之后无法操作数据的原因及解决方法

    前言:做项目的时候我用ajax请求json数据,遍历使用数据时却发现页面无响应.关于这个问题今天有个朋友又问了我一次,记录一下.由于我没有记录,这里用我朋友的图片. 代码现象: 这里他是使用alert ...

  3. c++:-7

    上一节主要学习C++中的函数模版.数据结构以及排序查找操作:c++:-6,本节学习C++的范型程序设计和STL: 范型程序设计 编写不依赖于具体数据类型的程序 将算法从特定的数据结构中抽象出来,成为通 ...

  4. 关于Spring中的useSuffixPatternMatch

    背景 spring-boot的版本是2.1.4.RELEASE,spring的版本是5.1.6.RELEASE 一个例子如下: @Configuration @Import(WebMvcAutoCon ...

  5. 如何生成一个java文档

    如何生成一个java文档 众所周知,一个程序给别人看可能可以看懂,几万行程序就不一定了.在更多的时候,我们并不需要让别人知道我们的程序是怎么写的,只需要告诉他们怎么用的.那么,api文档就发挥了它的作 ...

  6. Spring Security之短信登录

    实现短信验证码登录 前面实现了 用户名+密码 的登录方式,现在实现一下短信验证码登录. 开发短信验证码接口 短信验证码和图形验证码类似,用户从手机短信得到验证码和从图片得到验证码类似. 校验短信验证码 ...

  7. 论文解读(SCGC))《Simple Contrastive Graph Clustering》

    论文信息 论文标题:Simple Contrastive Graph Clustering论文作者:Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu论文来源 ...

  8. mysql外键与表查询

    目录 自增特性 外键 外键关系 外键创建 外键的约束效果 级联更新级联删除 多对多关系 一对一关系 表查询关键字 select与from where筛选 group by分组 练习 关系练习 查询练习 ...

  9. python字符编码与文件操作

    目录 字符编码 字符编码是什么 字符编码的发展史 字符编码实际应用 编码与解码 乱码问题 python解释器层面 文件操作 文件操作简介 文件的内置方法 文件的读写模式 文件的操作模式 作业 答案 第 ...

  10. break、continue、return中选择一个,我们结束掉它

      在平时的开发过程中,经常会用到循环,在写循环的过程中会有很多判断条件及逻辑,你知道如何结束一个循环吗?在java中有break.continue.reture三个关键字都可以结束循环,我们看下他们 ...