非线性模型

非线性模型

例子:销售额x与流通费率y

> x=c(1.5,2.8,4.5,7.5,10.5,13.5,15.1,16.5,19.5,22.5,24.5,26.5)
> y=c(7.0,5.5,4.6,3.6,2.9,2.7,2.5,2.4,2.2,2.1,1.9,1.8)
> plot(x,y)

1.直线回归

> lm.1=lm(y~x)
> summary(lm.1)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-0.9179 -0.5537 -0.1628 0.3953 1.6519

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.60316 0.43474 12.889 1.49e-07 ***
x -0.17003 0.02719 -6.254 9.46e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7701 on 10 degrees of freedom
Multiple R-squared: 0.7964, Adjusted R-squared: 0.776
F-statistic: 39.11 on 1 and 10 DF, p-value: 9.456e-05

,不理想

2.对数法,

> lm.log=lm(y~log(x))
> summary(lm.log)

Call:
lm(formula = y ~ log(x))

Residuals:
Min 1Q Median 3Q Max
-0.33291 -0.10133 -0.04693 0.16512 0.34844

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.3639 0.1688 43.64 9.60e-13 ***
log(x) -1.7568 0.0677 -25.95 1.66e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2064 on 10 degrees of freedom
Multiple R-squared: 0.9854, Adjusted R-squared: 0.9839
F-statistic: 673.5 on 1 and 10 DF, p-value: 1.66e-10
> plot(x,y);lines(x,fitted(lm.log))

比直线回归拟合效果要好,但还是有不足

3.指数法,

> lm.exp=lm(log(y)~x)
> summary(lm.exp)

Call:
lm(formula = log(y) ~ x)

Residuals:
Min 1Q Median 3Q Max
-0.18246 -0.10664 -0.01670 0.08079 0.25946

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.759664 0.075101 23.43 4.54e-10 ***
x -0.048809 0.004697 -10.39 1.12e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.133 on 10 degrees of freedom
Multiple R-squared: 0.9153, Adjusted R-squared: 0.9068
F-statistic: 108 on 1 and 10 DF, p-value: 1.116e-06

> plot(x,y);lines(x,exp(fitted(lm.exp)))

效果并无太大变化,反而更糟

4.幂函数法,

> lm.pow=lm(log(y)~log(x))
> summary(lm.pow)

Call:
lm(formula = log(y) ~ log(x))

Residuals:
Min 1Q Median 3Q Max
-0.054727 -0.020805 0.004548 0.024617 0.045896

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.19073 0.02951 74.23 4.81e-15 ***
log(x) -0.47243 0.01184 -39.90 2.34e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0361 on 10 degrees of freedom
Multiple R-squared: 0.9938, Adjusted R-squared: 0.9931
F-statistic: 1592 on 1 and 10 DF, p-value: 2.337e-12

> plot(x,y);lines(x,exp(fitted(lm.pow)))



检验结果来看上升了,也通过了假设检验,从图上来看拟合效果非常好

R与数据分析旧笔记(十)非线性模型的更多相关文章

  1. R与数据分析旧笔记(十八完结) 因子分析

    因子分析 因子分析 降维的一种方法,是主成分分析的推广和发展 是用于分析隐藏在表面现象背后的因子作用的统计模型.试图用最少的个数的不可测的公共因子的线性函数与特殊因子之和来描述原来观测的每一分量 因子 ...

  2. R与数据分析旧笔记(十六) 基于密度的方法:DBSCAN

    基于密度的方法:DBSCAN 基于密度的方法:DBSCAN DBSCAN=Density-Based Spatial Clustering of Applications with Noise 本算法 ...

  3. R与数据分析旧笔记(十五) 基于有代表性的点的技术:K中心聚类法

    基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成 ...

  4. R与数据分析旧笔记(十四) 动态聚类:K-means

    动态聚类:K-means方法 动态聚类:K-means方法 算法 选择K个点作为初始质心 将每个点指派到最近的质心,形成K个簇(聚类) 重新计算每个簇的质心 重复2-3直至质心不发生变化 kmeans ...

  5. R与数据分析旧笔记(十二)分类 (支持向量机)

    支持向量机(SVM) 支持向量机(SVM) 问题的提出:最优分离平面(决策边界) 优化目标 决策边界边缘距离最远 数学模型 问题转化为凸优化 拉格朗日乘子法--未知数太多 KKT变换和对偶公式 问题的 ...

  6. R与数据分析旧笔记(十一)数据挖掘初步

    PART 1 PART 1 传统回归模型的困难 1.为什么一定是线性的?或某种非线性模型? 2.过分依赖于分析者的经验 3.对于非连续的离散数据难以处理 网格方法 <Science>上的文 ...

  7. R与数据分析旧笔记(⑦)回归诊断

    回归诊断 回归诊断 1.样本是否符合正态分布假设? 2.是否存在离群值导致模型发生较大误差? 3.线性模型是否合理? 4.误差是否满足独立性.等方差.正态分布等假设条件? 5.是否存在多重共线性 正态 ...

  8. R与数据分析旧笔记(五)数学分析基本

    R语言的各种分布函数 rnorm(n,mean=0,sd=1)#高斯(正态) rexp(n,rate=1)#指数 rgamma(n,shape,scale=1)#γ分布 rpois(n,lambda) ...

  9. R与数据分析旧笔记(三)不知道取什么题目

    连线图 > a=c(2,3,4,5,6) > b=c(4,7,8,9,12) > plot(a,b,type="l") 多条曲线效果 plot(rain$Toky ...

随机推荐

  1. c#常见操作

    1. StreamWriter - 文件写入类StreamWriter s = new StreamWriter(address + "/Menu.ini", true);s.Wr ...

  2. 获取一个请求的URL内容

    using System.Net; 1. // 创建一个请求的URL.          WebRequest request = WebRequest.Create("http://www ...

  3. C#的输入输出及基本类型

    //输出 Console.WriteLine("摩西摩西"); Console.Write("hollo");不带回车的 注意: 1.注意大小写敏感.(快捷键操 ...

  4. ORACLE函数TO_CHAR以及数字转换格式[Z]

    本来这是很简单的函数,但在屡次忘记格式之后,决定还是翻译一遍以铭记在心.      参考<<Oracle Database SQL Reference>>.      关于nl ...

  5. ftp上来显示的时间和系统时间不一致

    ftp上来显示的时间和系统时间不一致,是因为默认情况下,vsftpd 是用GMT做为他的时间的,所以和系统的时间可能会不一致 修改也非常简单: vi /etc/vsftpd/vsftpd.conf 在 ...

  6. NOIP2012模拟试题 121105【奶牛排队(tahort)

    3.奶牛排队(tahort) [ 问题描述] 奶牛在熊大妈的带领下排成了一条直队. 显然,不同的奶牛身高不一定相同…… 现在,奶牛们想知道,如果找出一些连续的奶牛,要求最左边的奶牛A是最矮的,最右边的 ...

  7. STL MAP 反序迭代

    ITS_NOTICE_MAP::reverse_iterator it = noticeMap.rbegin(); for ( ; it != noticeMap.rend(); ++it ) { I ...

  8. Js中 关于top、clientTop、scrollTop、offsetTop等

    网页可见区域宽: document.body.clientWidth;网页可见区域高: document.body.clientHeight;网页可见区域宽: document.body.offset ...

  9. Mysql语句的批量操作[修改]

    UPDATE `cla_info` SET `comment` = CASE ) THEN 'A' ) THEN 'B' ) THEN 'C' ) THEN 'D' END, `collect` = ...

  10. 纯css3实现tab选项卡

    <!doctype html> <html> <head> <title>Welcome</title> <meta http-equ ...