转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4303855.html   ---by 墨染之樱花

【题目链接】:http://poj.org/problem?id=2449

【题目描述】:给出图,求从起点到终点的第K短路

【思路】:求第K短的算法基于BFS搜索,当终点出队K次时,所走的总距离就是第K短路,不过这样那些不该走的路会被反复的走,造成许多空间时间浪费,这时候就要用到启发式的A*搜索。关于此算法的详细内容请自行查阅资料,这里简单的提一下。A*算法利用一个估价函数f(n)=g(n)+h(n),其中g(n)表示起点s到点n所耗费的实际代价,h(n)表示n到终点t所估计的代价,也就是说理想情况下从n到t还要耗费的代价,h(n)越接近真实值算法速度越快(实际上BFS就是h(n)始终为0的A*特例)。在网格图中h(n)可以为欧几里得距离或者是曼哈顿距离,在此题中,我们将从n到t的最短路作为h(n)。完成估价函数以后,我们以估价函数为优先级进行搜索(可以用优先队列实现,f(n)小的先搜索),这样就能大致保证搜索路径始终朝着我们想要的方向走,从而加快搜索速度。

 #include <iostream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <sstream>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <string>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <climits>
using namespace std;
#define XINF INT_MAX
#define INF 1<<30
#define MAXN 1000+10
#define eps 1e-10
#define zero(a) fabs(a)<eps
#define sqr(a) ((a)*(a))
#define MP(X,Y) make_pair(X,Y)
#define PB(X) push_back(X)
#define PF(X) push_front(X)
#define REP(X,N) for(int X=0;X<N;X++)
#define REP2(X,L,R) for(int X=L;X<=R;X++)
#define DEP(X,R,L) for(int X=R;X>=L;X--)
#define CLR(A,X) memset(A,X,sizeof(A))
#define IT iterator
#define PI acos(-1.0)
#define test puts("OK");
#define _ ios_base::sync_with_stdio(0);cin.tie(0);
typedef long long ll;
typedef pair<int,int> PII;
typedef priority_queue<int,vector<int>,greater<int> > PQI;
typedef vector<PII> VII;
typedef vector<int> VI;
#define X first
#define Y second int V,E,S,T,K;
int d[MAXN];
VII G[MAXN];
VII rG[MAXN]; //对反图dijkstra,求出每个点到终点的最短路,作为预计代价h(n)
int cnt[MAXN]={}; //记录出队次数 void dijkstra(int s)
{
priority_queue<PII,VII,greater<PII> > Q;
fill(d,d+V,INF);
d[s]=;
Q.push(MP(d[s],s));
while(!Q.empty())
{
PII p=Q.top();Q.pop();
int v=p.Y;
if(d[v]<p.X)
continue;
REP(i,rG[v].size())
{
PII e=rG[v][i];
if(d[e.X]>d[v]+e.Y)
{
d[e.X]=d[v]+e.Y;
Q.push(MP(d[e.X],e.X));
}
}
}
} struct node //A*搜索用节点
{
int num,g,h;
bool operator<(const node &b)const
{
return g+h!=b.g+b.h?g+h>b.g+b.h:g>b.g; //以f=g+h为第一关键字,g为第二关键字
}
node(int _num=,int _g=,int _h=){num=_num;g=_g;h=_h;}
}; int astar(int s,int t)
{
priority_queue<node> Q;
node st(s,,d[s]);
Q.push(st);
while(!Q.empty())
{
node temp=Q.top();Q.pop();
int u=temp.num,ug=temp.g,uh=temp.h;
cnt[u]++;
if(u==t && cnt[t]==K)
return ug;
if(cnt[u]>K)
continue;
REP(i,G[u].size())
{
int v=G[u][i].X,cost=G[u][i].Y;
node next(v,ug+cost,d[v]);
Q.push(next);
}
}
return -;
} int main()
{_
scanf("%d%d",&V,&E);
REP(i,E)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
x--;y--;
G[x].PB(MP(y,c));
rG[y].PB(MP(x,c));
}
scanf("%d%d%d",&S,&T,&K);
S--;T--;
if(S==T) //起点与终点相同时,最短路显然是0,不过不能算 ,所以k++
K++;
dijkstra(T); //反向dijkstra,求出每个点到T的最短路,作为h(i)
printf("%d\n",astar(S,T));
return ;
}

poj2449 Remmarguts' Date【A*算法】的更多相关文章

  1. POJ2449 Remmarguts' Date A*算法

    题意是让求从st的ed第k短路... 考虑A*算法:先把终点到每个点最短路跑出来(注意要建反图),当做估价函数h(u),然后跑A* 每次取出总代价最小的,即g(u)+h(u)最小的进行扩展,注意如果u ...

  2. [poj2449]Remmarguts' Date(spfa+A*)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Remmarguts' Date Time Limit: 4000MS   Mem ...

  3. [poj2449]Remmarguts' Date(K短路模板题,A*算法)

    解题关键:k短路模板题,A*算法解决. #include<cstdio> #include<cstring> #include<algorithm> #includ ...

  4. POJ2449 Remmarguts' Date

    "Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. ...

  5. POJ2449 Remmarguts' Date 第K短路

    POJ2449 比较裸的K短路问题 K短路听起来高大上 实际思路并不复杂 首先对终点t到其他所有点求最短路 即为dist[] 然后由起点s 根据当前走过的距离+dist[]进行A*搜索 第k次到达t即 ...

  6. poj2449 Remmarguts' Date K短路 A*

    K短路裸题. #include <algorithm> #include <iostream> #include <cstring> #include <cs ...

  7. 图论(A*算法,K短路) :POJ 2449 Remmarguts' Date

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 ...

  8. poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)

    http://poj.org/problem?id=2449 Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  9. poj 2449 Remmarguts' Date 第k短路 (最短路变形)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 33606   Accepted: 9116 ...

随机推荐

  1. WebApi服务

    WCF 它利用TCP.HTTP.MSMQ等传输协议构建“契约先行”的服务.WCF最初为基于SOAP的服务而设计[xml],繁琐.冗余.慢.沉重 WebApi 基于http协议,轻量级的,支持URL路由 ...

  2. SnappyDB—Android上的NoSQL数据库简介

    参考:http://www.open-open.com/lib/view/open1420816891937.html 参考:http://android-arsenal.com/details/1/ ...

  3. IQC,QA,FQC,OQC,IPQC的定义与职责

    进货检验员(IQC):CLInetLabIQC(以下简称IQC)是CLInet在多年开发维护EQA(实验室间质量评价)系统后,成功开发的一套完善的实验室内部的质量评价.质量控制的软件.它不仅包含了每家 ...

  4. QT 一些非常常用的操作

    一   如果在窗体关闭前自行判断是否可关闭二   如何用打开和保存文件对话框  三   如何使用警告.信息等对话框  四   在Windows下Qt里为什么没有终端输出五   想在源代码中直接使用中文 ...

  5. HDU 3362 Fix

    题目大意:题目给出n(n <= 18)个点的二维坐标,并说明某些点是被固定了的,其余则没固定,要求添加一些边,使得还没被固定的点变成固定的,当一个没固定的点和两个固定了的点连接后,该点就被间接固 ...

  6. java对象的比较分析

    关于对象的比较我们可以通过以下三种手段来实现 一.利用"=="比较引用 Java中,当比较简单类型变量时用"==",只要两个简单类型值相等即返回ture,否则返 ...

  7. data pump(数据泵)

    先给出oracle给出的一个定义: “Oracle Data Pump technology enables very high-speed movement of data and metadata ...

  8. <td style="word-break:break-all"> 在html中控制自动换行

    在html中控制自动换行   其实只要在表格控制中添加一句 <td style="word-break:break-all">就搞定了. 其中可能对英文换行可能会分开一 ...

  9. The Building Blocks-Components of EA part 1- Information and Strategy

    1. Zachman Framework Presented as matrix of Rows and Columns representing domain of interest and lev ...

  10. 如何在windows server 2012 R2 部署WEB项目

    tip: 今天发布项目到windows server 2012 R2上面. 没有接触过,其实很简单,看图: 这是安装IIS成功后显示的总图: 二.点击Manage ,选择Add Roles and F ...