1棵树的话, 点分治+你喜欢的数据结构(树状数组/线段树/平衡树)就可以秒掉, O(N log^2 N). 假如是环套树, 先去掉环上1条边, 然后O(N log^2 N)处理树(同上); 然后再O(N log N)计算经过删掉边的路径数(在环上扫一遍, 数据结构维护).

-------------------------------------------------------------------------

#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
 
using namespace std;
 
typedef long long ll;
 
const int maxn = 100009;
 
int N, M, K, e_u, e_v, n, Rt, T, _T, len;
int par[maxn], sz[maxn], mx[maxn], nxt[maxn];
bool vis[maxn];
ll ans;
 
template<class T>
inline void Max(T &x, T t) {
if(t > x) x = t;
}
 
inline int getint() {
char c = getchar();
for(; !isdigit(c); c = getchar());
int ret = 0;
for(; isdigit(c); c = getchar())
ret = ret * 10 + c - '0';
return ret;
}
 
struct edge {
int t;
edge* n;
} E[maxn << 1], *pt = E, *H[maxn];
 
inline void AddEdge(int u, int v) {
pt->t = v, pt->n = H[u], H[u] = pt++;
}
 
void dfs_rt(int x, int fa = -1) {
mx[x] = sz[x] = 1;
for(edge* e = H[x]; e; e = e->n) if(e->t != fa && !vis[e->t]) {
dfs_rt(e->t, x);
sz[x] += sz[e->t];
Max(mx[x], sz[e->t]);
}
Max(mx[x], n - sz[x]);
if(Rt < 0 || mx[x] < mx[Rt]) Rt = x;
}
 
void dfs_sz(int x, int fa = -1) {
sz[x] = 1;
for(edge* e = H[x]; e; e = e->n) if(e->t != fa && !vis[e->t]) {
dfs_sz(e->t, x);
sz[x] += sz[e->t];
}
}
 
struct BIT {
int B[maxn], mk[maxn];
BIT() {
memset(B, 0, sizeof B);
}
inline void Add(int p, int c) {
for(; p <= N; p += p & -p) if(mk[p] != c) {
B[p] = 1;
mk[p] = c;
} else
B[p]++;
}
inline int Sum(int p, int c) {
if(p < 0) return 0;
int ret = 0;
for(; p; p -= p & -p)
if(mk[p] == c) ret += B[p];
return ret;
}
inline int Query(int l, int r, int c) {
return Sum(r, c) - Sum(l - 1, c);
}
} A, B, *CUR[2];
 
void dfs_add(int v, int t, int x, int d, int fa = -1) {
CUR[v]->Add(d++, t);
for(edge* e = H[x]; e; e = e->n)
if(e->t != fa && !vis[e->t]) dfs_add(v, t, e->t, d, x);
}
 
void Solve(int x) {
Rt = -1;
dfs_rt(x);
vis[x = Rt] = true;
dfs_sz(x);
for(edge* e = H[x]; e; e = e->n) if(!vis[e->t]) {
dfs_add(0, ++T, e->t, 1);
for(int i = 1; i <= sz[e->t]; i++)
ans += ll(CUR[0]->Query(i, i, T)) * CUR[1]->Query(K - i, N, Rt);
dfs_add(1, Rt, e->t, 2);
}
ans += CUR[1]->Query(K, N, Rt);
for(edge* e = H[x]; e; e = e->n) if(!vis[e->t]) {
n = sz[e->t];
Solve(e->t);
}
}
 
bool DFS_C(int x, int fa = -1) {
for(edge* e = H[x]; e; e = e->n) if(e->t != fa) {
nxt[e->t] = x;
if(e->t == e_v) {
len = 2;
return true;
}
if(DFS_C(e->t, x)) {
len++;
return true;
}
}
return false;
}
 

void calc(int x, int v, int d) {

vis[x] = true;
_T++;
dfs_add(v, _T, x, d, nxt[x]);
dfs_sz(x, nxt[x]);
for(int i = d; i <= d + sz[x]; i++)
ans += ll(CUR[v]->Query(i, i, _T)) * (CUR[v ^ 1]->Query(K - i, N, T));
dfs_add(v ^ 1, T, x, len - d + 1, nxt[x]);
if(!vis[nxt[x]])
calc(nxt[x], v, d - 1);
}
 
void Work() {
CUR[0] = &A, CUR[1] = &B;
memset(vis, 0, sizeof vis);
n = N;
Solve(T = 0);
if(M < N) {
cout << ans << endl;
return;
}
A = BIT(), B = BIT();
CUR[0] = &A, CUR[1] = &B;
T = _T = 0;
DFS_C(e_u);
nxt[e_u] = e_v;
++T;
memset(vis, 0, sizeof vis);
vis[e_v] = true;
dfs_add(0, T, e_v, 1, nxt[e_v]);
calc(nxt[e_v], 1, len - 1);
cout << ans << "\n";
}
 
int Find(int x) {
return x == par[x] ? x : par[x] = Find(par[x]);
}
 
void Init() {
N = getint(), M = getint(), K = getint();
for(int i = 0; i < N; i++) par[i] = i;
for(int i = 0; i < M; i++) {
int u = getint() - 1, v = getint() - 1;
int _u = Find(u), _v = Find(v);
if(_u != _v) {
par[_u] = _v;
AddEdge(u, v);
AddEdge(v, u);
} else
e_u = u, e_v = v;
}
ans = 0;
}
 
int main() {
Init();
Work();
return 0;
}

-------------------------------------------------------------------------

3648: 寝室管理

Time Limit: 40 Sec  Memory Limit: 512 MB
Submit: 136  Solved: 67
[Submit][Status][Discuss]

Description

T64有一个好朋友,叫T128。T128是寄宿生,并且最近被老师叫过去当宿管了。宿管可不是一件很好做的工作,碰巧T128有一个工作上的问题想请T64帮忙解决。
  T128的寝室条件不是很好,所以没有很多钱来装修。礼间寝室仅由n-1条双向道路连接,而且任意两间寝室之间都可以互达。最近,T128被要求对一条路径上的所有寝室进行管理,这条路径不会重复经过某个点或某条边。但他不记得是哪条路径了。他只记得这条路径上有不少于k个寝室。于是,他想请T64帮忙数一下,有多少条这样的路径满足条件。
    嗯…还有一个问题。由于最近有一些熊孩子不准晚上讲话很不爽,他们决定修筑一条“情报通道”,如果通道建成,寝室就变成了一个N个点N条边的无向图。并且,经过“情报通道”的路径也是合法的。T128心想:通道建成之前,T64还有一个高效的算法帮我数路径条数,但是通道建成之后,他还有办法吗?对,T64手忙脚乱,根本数不清有多少条路径。于是他找到了你。

Input

第一行为三个正整数N,M,K(2 ≤ K ≤ N),代表有n间寝室,m条边连接它们n-1 ≤ m ≤ N;m= n-1意味着“情报遁道”未被修好;m=n意味着“情报通道”已被修好),以及题目描述中的K。
  接下来m行,每行两个正整数z,y,代表第x间寝室与第y间寝室之间有一条双向边。

Output

仅包含一个整数,代表经过至少K间寝室的路径条数。

Sample Input

5 5
1 3
2 4
3 5
4 1
5 2

Sample Output

20

HINT

N≤100000

K≤N

M=N

Source

BZOJ 3648: 寝室管理( 点分治 + 树状数组 )的更多相关文章

  1. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

  2. BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )

    考虑cdq分治, 对于[l, r)递归[l, m), [m, r); 然后计算[l, m)的操作对[m, r)中询问的影响就可以了. 具体就是差分答案+排序+离散化然后树状数组维护.操作数为M的话时间 ...

  3. bzoj 3730 震波——动态点分治+树状数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3730 查询一个点可以转化为查询点分树上自己到根的路径上每个点对应范围答案.可用树状数组 f ...

  4. bzoj 3730 震波 —— 动态点分治+树状数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3730 建点分树,每个点记两个树状数组,存它作为重心管辖的范围内,所有点到它的距离情况和到它在 ...

  5. BZOJ 1176 Mokia CDQ分治+树状数组

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  6. BZOJ_3262_陌上花开_CDQ分治+树状数组

    BZOJ_3262_陌上花开_CDQ分治+树状数组 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),用三个整数表示. 现在要对每朵花评级,一朵花的级别是它拥有的 ...

  7. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  8. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

  9. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

随机推荐

  1. 被「李笑来老师」拉黑之「JavaScript微博自动转发的脚本」

    故事的背景如下图,李笑来 老师于10月19日在 知乎Live 开设 一小时建立终生受用的阅读操作系统 的讲座,他老人家看到大家伙报名踊跃,便在微博上发起了一个 猜数量赢取iPhone7 的活动. 因为 ...

  2. 《JavaScript 闯关记》之语法

    JavaScript 的语法大量借鉴了 C 及其他类 C 语言(如 Java 和 Perl)的语法.因此,熟悉这些语言的开发人员在接受 JavaScript 更加宽松的语法时,一定会有种轻松自在的感觉 ...

  3. .NET 下成熟开源的BPM产品四款推荐

    .net下的BPM产品相比JAVA的确实不多,这里主要提4款. 1.博客园.github.codeplex上的开源的流程组件AppInOne BPM,目前已有不少的企业开始使用. 优点:产品框架较全面 ...

  4. Z - 不容易系列之(3)―― LELE的RPG难题

    Description          人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深C ...

  5. Linq to DataSet 和 DataSet使用方法学习

    简单入门: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Sy ...

  6. 基本语法 - PHP手册笔记

    PHP标记 如果文件内容是纯PHP代码,最好在文件末尾删除PHP结束标记.这可以避免在PHP结束标记之后万一意外加入了空格或者换行符,会导致PHP开始输出这些空白,而脚本中此时并无输出的意图.当然PH ...

  7. 自定义filter

    class md5_filter extends php_user_filter{ public function filter($in,$out,&$consumed,$closing){ ...

  8. NDEF-NFC数据交换格式

    为实现NFC标签.NFC设备以及NFC设备之间的交互通信,NFC论坛(NFC FROUM)定义了称为NFC数据交换格式(NDEF)的通用数据格式.NDEF是轻量级的紧凑的二进制格式,可带有URL,vC ...

  9. C#操作XML的完整例子——XmlDocument篇(转载,仅做学习之用)

    原文地址:http://www.cnblogs.com/serenatao/archive/2012/09/05/2672621.html 这是一个用c#控制台程序下,  用XmlDocument 进 ...

  10. uva10820 send a table (nlogn求1-n欧拉函数值模版

    //重点就是求1-n的欧拉函数啦,重点是nlogn求法的版 //大概过程类似于筛选法求素数 #include<cstdio> #include<iostream> #inclu ...