参考来源于:http://www.cnblogs.com/goodluckcwl/p/5686094.html  (部分内容做了修改)

Caffe是一个深度学习框架,本文讲阐述如何在linux下安装GPU加速的caffe。 系统配置是:

  • OS:                Ubuntu14.04
  • CPU:              i5-4690
  • GPU:           GTX960
  • RAM:             8G

安装方法参见caffe的官方文档:http://caffe.berkeleyvision.org/installation.html#compilation 依赖项:

  • CUDA:推荐7.0以上的cuda和最新的显卡驱动。
  • BLAS:ATLAS, MKL, or OpenBLAS。C++矩阵运算库。
  • Boost >= 1.55。用到一些数学函数等。
  • protobuf:是一种轻便、高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。
  • glog&&gflags:谷歌的一个日志库;命令行参数解析库。方便调试使用。
  • hdf5:
  • lmdb,leveldb:数据库IO。准备数据时会用到。

可选依赖:

  • OpenCV >= 2.4 including 3.0
  • IO libraries: lmdb, leveldb (note: leveldb requires snappy)
  • cuDNN for GPU acceleration (v5)

Pycaffe: Python 2.7 or Python 3.3+, numpy (>= 1.7), boost-provided boost.python

Matcaffe: MATLAB with the mex compiler

安装CUDA7.5

CUDA维基百科:https://zh.wikipedia.org/wiki/CUDA CUDA(Compute Unified Device Architecture,统一计算架构)是由NVIDIA所推出的一种集成技术,是该公司对于GPGPU的正式名称。通过这个技术,用户可利用NVIDIA的GeForce 8以后的GPU和较新的Quadro GPU进行计算。亦是首次可以利用GPU作为C-编译器的开发环境。

安装过程

1.下载Cuda

下载CUDA:https://developer.nvidia.com/cuda-downloads 选择下载deb包(或者runfile),下载完后用mu5sum检查一下文件是否完整。按照cuda官方文档安装cuda.

2.安装

先关闭桌面显示管理器lightdm,进入字符界面,在字符界面安装cuda。(这是因为cuda的安装包里包含了显卡驱动,安装驱动前要先关闭桌面显示管理器) (也可分别安装显卡驱动与cuda库)

sudo service stop

切换到deb包目录,执行下面的命令

sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb
sudo apt-get update
sudo apt-get install cuda

然后重启电脑:sudo reboot 注意,cuda的安装包中已经包含了较新版本的显卡驱动。

3.配置环境变量

将cuda安装目录下的bin路径导出到系统的搜索路径path 并使之生效 添加动态库查找路径:在 /etc/ld.so.conf.d/加入文件 cuda.conf, 内容如下

/usr/local/cuda/lib64

保存后,执行下列命令使之立刻生效:

sudo ldconfig

4.验证

查看Cuda的C编译器NVCC的版本:

nvcc -V

编译并运行例子,进入cuda目录下的samples目录,然后在该目录下make,等待十来分钟。编译完成后,可以在Samples里面找到bin/x86_64/linux/release/目录,并切换到该目录 运行deviceQuery程序,查看输出结果如下(重点关注最后一行,Pass表示通过测试)。

5.gcc编译器版本

该版本cuda不支持gcc5.0的编译器

参考文献: [1]Ubuntu 16.04 安装 NVIDIA CUDA Toolkit 7.5 https://gist.github.com/dangbiao1991/2c895917ea888ce33af8c1c72444b7bf [2]Ubuntu 14.04+cuda 7.5+caffe安装配置 http://blog.csdn.net/ubunfans/article/details/47724341

安装Cudnn

下载cudnn https://developer.nvidia.com/rdp/cudnn-download, 解压,把lib目录,include目录分别复制到cuda的安装目录下。

安装BLAS

install ATLAS by sudo apt-get install libatlas-base-dev or install OpenBLAS or MKL for better CPU performance.

下载Caffe

安装Caffe依赖库

通用依赖库:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev

Ubuntu14.04 依赖库:

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

PyCaffe依赖库

进入caffe/python目录,安装依赖项:

for req in $(cat requirements.txt); do pip install $req; done

caffe官网推荐使用Anaconda http://continuum.io/downloads#all Anaconda是一个和Canopy类似的科学计算环境,但用起来更加方便。自带的包管理器conda也很强大。

MatCaffe

安装matlabR2014a

编译caffe

复制并修改Makefile.config文件:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /usr/local/MATLAB/R2014a
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/local/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0 # enable pretty build (comment to see full commands)
Q ?= @

进入caffe目录,执行:

make all
make test
make runtest

无错误,编译完成。

编译pycaffe与matcaffe

进入caffe目录,执行

make pycaffe
make matcaffe

Caffe python接口

复制caffe/python/caffe 到/usr/local/lib/python2.7/dist-packages/目录下。 复制caffe/build/lib/下的库文件到/usr/local/lib

$ sudo ldconfig

打开python,import caffe,无错误。

Caffe C++接口

分别将include,lib目录复制。

测试

测试mnist http://caffe.berkeleyvision.org/gathered/examples/mnist.html

准备数据

cd $CAFFE_ROOT
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh

LeNet: the MNIST Classification Model

paper 145:caffe-深度学习框架的搭建的更多相关文章

  1. Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程   blink 15年1月   Caffe (CNN, deep learning) 介绍 Caffe -----------Convolution Architec ...

  2. [转]Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281   blink 15年1月 6   Caffe448是一个清 ...

  3. Ubuntu 14.04 安装caffe深度学习框架

    简介:如何在ubuntu 14.04 下安装caffe深度学习框架. 注:安装caffe时一定要保持网络状态好,不然会遇到很多麻烦.例如下载不了,各种报错. 一.安装依赖包 $ sudo apt-ge ...

  4. Caffe 深度学习框架介绍

    转自:http://suanfazu.com/t/caffe/281 Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作. Caffe是 ...

  5. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  6. 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比

    http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...

  7. Caffe深度学习计算框架

    Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是 ...

  8. 金玉良缘易配而木石前盟难得|M1 Mac os(Apple Silicon)天生一对Python3开发环境搭建(集成深度学习框架Tensorflow/Pytorch)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_189 笔者投入M1的怀抱已经有一段时间了,俗话说得好,但闻新人笑,不见旧人哭,Intel mac早已被束之高阁,而M1 mac已经 ...

  9. 深度学习框架Caffe的编译安装

    深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...

随机推荐

  1. v-show与v-if的区别

    v-show有dom节点像display:none,而v-if隐藏的则没有dom节点.两个共同点都可以显隐

  2. HihoCoder - 1664 (单调队列)

    题目:https://vjudge.net/contest/319166#problem/B 题意: 一个01间隔矩阵,求一个方阵的最大边长,这个方阵的要求是里面01分隔,不能有01相邻 思路:同   ...

  3. JS继承 实现方式

    JS中继承方式的实现有多种方法,下面是比较推荐的方法,其它继承方式可做了解: function object(o) { function F() {} F.prototype = o; return ...

  4. Hooking EndScene

    Hey guys, umm i was trying to hook endscene using detours and i used a method that i hooked many oth ...

  5. Nuget-Doc:NuGet 介绍

    ylbtech-Nuget-Doc:NuGet 介绍 NuGet 是适用于 .NET 的包管理器. 它使开发人员能够创建.共享和使用有用的 .NET 库. NuGet 客户端工具可生成这些库并将其作为 ...

  6. Centos 7.3 配置Xmanager XDMCP

    我们通常需要远程桌面,这会带来很好的便利性,而Centos7的XDMCP配置过程发生了变化,添加了很多新特性,初期难免会不适应,但新系统终究还是不错的.下面看看Centos7下如何配置XManager ...

  7. 0.OpenCV框架

    reference: https://docs.opencv.org/4.1.2/ 基本使用 1.图片和视频,读写(2,8) 2.OpenCV基本数据类型(3) 3.OpenCV大型数据类型及操作:图 ...

  8. appium常见问题05_修改Android手机运行环境(adb指令修改hosts)

    自动化测试过程中,手机有时会跳网,怎样保持手机测试的环境稳定性,可以通过adb指令修改android手机hosts,保持手机运行在hosts中配置的环境中: 修改方法如下: 前提条件:已安装andro ...

  9. Java +selenium Navigation接口介绍

    Navigation接口主要实现对浏览器的前进.后退.打开网址.刷新当前页面等操作的. void back():就是操作当前页面后退,相当于网页的后退按钮. void forward():就是操作当前 ...

  10. pytorch与numpy中的通道交换问题

    pytorch网络输入图像的格式为(C, H, W),而numpy中的图像的shape为(H,W,C) 所以一般需要变换通道,将numpy中的shape变换为torch中的shape. 方法如下: # ...