题解 AT1357 【n^p mod m】
此题就是快速幂取模
先简单讲一讲快速幂
首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:
假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b=11时
a11=a(2^0+2^1+2^3)
11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a2^0 a2^1 a2^3,也就是a1a2 a8 ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子....不急,下面会有详细解释。
由于是二进制,很自然地想到用位运算这个强大的工具:&和>> &运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。 >>运算比较单纯,二进制去掉最后一位,不多说了,先放代码再解释。
int poww(int a, int b) {
int ans=1,base=a;
while(b!=0){
if (b & 1 != 0)
ans *= base;
base *= base;
b >>= 1;
}
return ans;
}
代码很短,死记也可行,但最好还是理解一下吧,其实也很好理解,以b==11为例,b=>1011,二进制从右向左算,但乘出来的顺序是 a^(2^0) a^(2^1) a^(2^3),是从左向右的。我们不断的让base*=base目的即是累乘,以便随时对ans做出贡献。
其中要理解base =base 这一步:因为 base base==base2,下一步再乘,就是base2 base2==base4,然后同理 base4 base4=base8,由此可以做到base-->base2-->base4-->base8-->base16-->base32.......指数正是 2^i ,再看上面的例子,a¹¹= a1 a2 a8,这三项就可以完美解决了,快速幂就是这样。
于是可得以下AC代码
#include<bits/stdc++.h>
using namespace std;
long long n,m,p;
long long quick_pow(){
long long ans=1;//记录结果
while(p){
if(p%2){//如果p%2是1,那么我们的结果是要参与运算的
ans*=n;
ans%=m;
}
p/=2;//每次除以2
n=n*n%m;//不断的加倍
}
return ans%m;
}
int main(){
cin>>n>>m>>p;
cout<<quick_pow()<<endl;
return 0;
}
题解 AT1357 【n^p mod m】的更多相关文章
- AT1357 n^p mod m(洛谷)
题意翻译 求 n^p mod m 的值 输入格式 一行,为整数 n,m,p(注意顺序) 输出格式 一行,为 n^p mod m 的值 数据说明 对于100%的数据 1≤n,m≤10^91≤n,m≤10 ...
- 51nod 1421 最大MOD值(高妙的调和级数复杂度)
有一个a数组,里面有n个整数.现在要从中找到两个数字(可以是同一个) ai,aj ,使得 ai mod aj 最大并且 ai ≥ aj. Input 单组测试数据. 第一行包含一个整数n,表示数组a的 ...
- HDU 1005 Number Sequence(数列)
HDU 1005 Number Sequence(数列) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- 2016——3——16 kmp 7题
1.传送门:http://begin.lydsy.com/JudgeOnline/problem.php?id=2725 题目大意:找一个串在另一个串中出现的次数 题解:kmp(纯裸题) #inclu ...
- hdu 6063 RXD and math(快速幂)
RXD and math Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)To ...
- luogu4383 [八省联考2018]林克卡特树(带权二分+dp)
link 题目大意:给定你 n 个点的一棵树 (边有边权,边权有正负) 你需要移除 k 条边,并连接 k 条权值为 0 的边,使得连接之后树的直径最大 题解: 根据 [POI2015]MOD 那道题, ...
- (ex)BSGS题表
学了一下BSGS大概知道他是什么了,但是并没有做什么难题,所以也就会个板子.普通的BSGS,我还是比较理解的,然而exBSGS我却只理解个大概,也许还会个板子......(这个东西好像都会有一群恶心的 ...
- AtCoder Grand Contest 025 Problem D - Choosing Points
题目大意:输入$n,d1,d2$,你要找到$n^2$个整点 x, y 满足$0 \leqslant x, y<2n$.并且找到的任意两个点距离,既不是$\sqrt{d1}$,也不是 $\sqrt ...
- bzoj 3544 [ONTAK2010]Creative Accounting 贪心
Description 给定一个长度为N的数组a和M,求一个区间[l,r],使得(\sum_{i=l}^{r}{a_i}) mod M的值最大,求出这个值,注意这里的mod是数学上的mod Input ...
随机推荐
- LTM加速优化特性
TCP Express TCP Express 是 LTM 产品的一项重要特性. 借助 TCP Express,LTM 可分别为客户机端和服务器端创建独立的连接.这样一来,LTM 可以针对客户机连接和 ...
- Devexpress 10
序言 Grid表格 资料 https://www.devexpresscn.com/
- BZOJ1491 Red is good
题目链接:Click here Solution: 考虑设\(f(i,j)\)表示当前还有\(i\)张红牌,\(j\)张黑牌时的期望收益 易得状态转移方程:\(f(i,j)=\frac{i}{i+j} ...
- BZOJ 1901 洛谷 P2617 ZOJ 2112 Dynamic Rankings
以下时空限制来自zoj Time limit 10000 ms Memory limit 32768 kB OS Linux Source Online Contest of Christopher' ...
- You Only Look Once Unified, Real-Time Object Detection(你只需要看一次统一的,实时的目标检测)
我们提出了一种新的目标检测方法YOLO.先前的目标检测工作重新利用分类器来执行检测.相反,我们将目标检测作为一个回归问题来处理空间分离的边界框和相关的类概率.单个神经网络在一次评估中直接从完整图像预测 ...
- jdbcTemplate进行CRUD,查询结果转json
通过Spring的jdbcTemplate作为dao层的框架,将获取到的字段名,及其值,通过put放在jsonObject或jsonArray中,将json返回. public class Sprin ...
- [UPC10525]:Dove打扑克(暴力+模拟)
题目描述 $Dove$和$Cicada$是好朋友,他们经常在一起打扑克来消遣时光,但是他们打的扑克有不同的玩法. 最开始时,牌桌上会有$n$个牌堆,每个牌堆有且仅有一张牌,第$i$个牌堆里里里那个扑克 ...
- centos7 修改ali yum源
centos7 修改yum源为阿里源,某下网络下速度比较快 首先是到yum源设置文件夹里 安装base reop源 cd /etc/yum.repos.d 接着备份旧的配置文件 sudo mv Cen ...
- c/c++运算符
1.算术运算符(+ - / * %) 2.移位运算符 移运算符:操作数必须是整形,>>,逻辑左移左边移入的位用0填充,算数左移左边移入的的位用符号位补齐.(无符号数为逻辑左移,对于 ...
- mysql中查看ef或efcore生成的sql语句
http://www.solves.com.cn/it/sjk/MYSQL/2019-07-01/1336.html 涉及命令 1.开启general log模式 MySQL>set globa ...