Miller-Robin 素数测试法 模板
测试单个素数,出错概率比计算机本身出错的概率还要低
算法是基于费马小定理(format),二次探测定理(x*x % p == 1 ,若P为素数,则x的解只能是x = 1或者x = p - 1)加上迭代乘法判断的Miller算法共同构成的
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <string> using namespace std; int N; int witness(int a, int n)//随机生成的a,来检测n的素性
{
int ans = ;
int t = n - ;//这里需要注意,你如果没有改变乘方的次数的话,最后的判断就是(ans == a) ? 0 : 1;
// 并且还要另外开辟空间来存储开始的a,比较麻烦,所以就这样了;
int x;
while (t)
{
if (t & )
{
ans = (long long int)ans * a % n;
}
x = a;//从这里开始就是迭代乘法,验证二次验证定理
a = (long long int)a * a % n;//这里就相当于 x*x % m = 1
if (a == && x != && x != (n - ))
{
return ; // 这里需要注意,返回一的话就说明,追踪过程中,出现了不是素数的依据.
}
t >>= ;
}
return (ans == ) ? : ;
} int MillerRobin(int n, int s) // 一般s取50就可以避免所有的偶然性了.
{
if (n == )
{
return ;
}
if (n < || !(n & ))
{
return ;
}
int a;
for (int i = ; i < s; i++)
{
a = (long long int )rand() * (n - ) / RAND_MAX + ; //这样生成的随机数就是真正的随机数了
if (witness(a, n))
{
return ;
}
}
return ;
} int main()
{
while (scanf("%d", &N) != EOF)
{
if (N == )
{
break;
}
if (MillerRobin(N, ))
{
printf("%d is a prime!\n", N);
}
else
{
printf("%d is not a prime!\n", N);
}
}
return ;
}
参考:https://blog.csdn.net/aledavvv/article/details/8929416
Miller-Robin 素数测试法 模板的更多相关文章
- 【数论】Prime Time UVA - 10200 大素数 Miller Robin 模板
题意:验证1~10000 的数 n^n+n+41 中素数的个数.每个询问给出a,b 求区间[a,b]中质数出现的比例,保留两位 题解:质数会爆到1e8 所以用miller robin , 另外一个优 ...
- Miller Robin大素数判定
Miller Robin算法 当要判断的数过大,以至于根n的算法不可行时,可以采用这种方法来判定素数. 用于判断大于2的奇数(2和偶数需要手动判断),是概率意义上的判定,因此需要做多次来减少出错概率. ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 5901 Count primes 素数计数模板
转自:http://blog.csdn.net/chaiwenjun000/article/details/52589457 计从1到n的素数个数 两个模板 时间复杂度O(n^(3/4)) #incl ...
- POJ2689 Prime Distance(数论:素数筛选模板)
题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...
随机推荐
- DevExpress WPF v19.1新版亮点:Ribbon等控件新功能
行业领先的.NET界面控件DevExpress 日前正式发布v19.1版本,本站将以连载的形式介绍各版本新增内容.在本系列文章中将为大家介绍DevExpress WPF v19.1中新增的一些控件及部 ...
- ZROI 19.07.29 线性代数入门/wq
1.高斯消元 在模意义下依然有效,对主元求逆即可. 甚至可以模合数,需要对两个方程辗转相除,复杂度\(O(n^3\log p)\). 辗转相除法只要能定义带余除法就有效. 逆矩阵:对于矩阵\(A\), ...
- PIXI如何绘制离屏canvas到舞台上
有个方法是toDataURL(),原生的,先转换成图片再绘制. 但是pixi提供了一个BaseTexture,其构造函数的参数可以是一个canvas 因此可以直接使用如下代码绘制canvas //微信 ...
- 区分Overloading、Overriding及Hiding
在面向对象(OO)的世界中存在着三个十分容易混淆的概念:重载(Overloading).重写(Overriding).隐藏(Hiding). 1.重载 重载是指同一作用域的不同函数使用相同的函数名,但 ...
- shiro框架学习-2-springboot整合shiro及Shiro认证授权流程
1. 添加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- css-div中文字过多(内容超出div宽度)后自动换行
故事是这样的: 买家秀:(refuse) ...
- 图片转base64使用JSON传输
要传输的JSON格式: { "orderId":"0001", "cargoReceiptNo":"iVBORw0KGgoAAAA ...
- UVa 129 Krypton Factor (DFS && 回溯)
题意 : 如果一个字符串包含两个相邻的重复子串,则称它是“容易的串”,其他串称为“困难的 串”.例如,BB.ABCDACABCAB.ABCDABCD都是容易的串,而D.DC.ABDAB. CBABCB ...
- You have 1 unapplied migration(s). Your project may not work properly until you apply the migrations for app(s): shopadmin. Run 'python manage.py migrate' to apply them.
数据库迁移时报错, You have 1 unapplied migration(s). Your project may not work properly until you apply the ...
- Selenium 上手:Selenium扫盲区
Selenium 自述Selenium 是由Jason Huggins软件工程师编写的一个开源的浏览器自动化测试框架.主要用于测试自动化Web UI应用程序. Selenium 工作原理通过编程语言( ...