Miller-Robin 素数测试法 模板
测试单个素数,出错概率比计算机本身出错的概率还要低
算法是基于费马小定理(format),二次探测定理(x*x % p == 1 ,若P为素数,则x的解只能是x = 1或者x = p - 1)加上迭代乘法判断的Miller算法共同构成的
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <string> using namespace std; int N; int witness(int a, int n)//随机生成的a,来检测n的素性
{
int ans = ;
int t = n - ;//这里需要注意,你如果没有改变乘方的次数的话,最后的判断就是(ans == a) ? 0 : 1;
// 并且还要另外开辟空间来存储开始的a,比较麻烦,所以就这样了;
int x;
while (t)
{
if (t & )
{
ans = (long long int)ans * a % n;
}
x = a;//从这里开始就是迭代乘法,验证二次验证定理
a = (long long int)a * a % n;//这里就相当于 x*x % m = 1
if (a == && x != && x != (n - ))
{
return ; // 这里需要注意,返回一的话就说明,追踪过程中,出现了不是素数的依据.
}
t >>= ;
}
return (ans == ) ? : ;
} int MillerRobin(int n, int s) // 一般s取50就可以避免所有的偶然性了.
{
if (n == )
{
return ;
}
if (n < || !(n & ))
{
return ;
}
int a;
for (int i = ; i < s; i++)
{
a = (long long int )rand() * (n - ) / RAND_MAX + ; //这样生成的随机数就是真正的随机数了
if (witness(a, n))
{
return ;
}
}
return ;
} int main()
{
while (scanf("%d", &N) != EOF)
{
if (N == )
{
break;
}
if (MillerRobin(N, ))
{
printf("%d is a prime!\n", N);
}
else
{
printf("%d is not a prime!\n", N);
}
}
return ;
}
参考:https://blog.csdn.net/aledavvv/article/details/8929416
Miller-Robin 素数测试法 模板的更多相关文章
- 【数论】Prime Time UVA - 10200 大素数 Miller Robin 模板
题意:验证1~10000 的数 n^n+n+41 中素数的个数.每个询问给出a,b 求区间[a,b]中质数出现的比例,保留两位 题解:质数会爆到1e8 所以用miller robin , 另外一个优 ...
- Miller Robin大素数判定
Miller Robin算法 当要判断的数过大,以至于根n的算法不可行时,可以采用这种方法来判定素数. 用于判断大于2的奇数(2和偶数需要手动判断),是概率意义上的判定,因此需要做多次来减少出错概率. ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 5901 Count primes 素数计数模板
转自:http://blog.csdn.net/chaiwenjun000/article/details/52589457 计从1到n的素数个数 两个模板 时间复杂度O(n^(3/4)) #incl ...
- POJ2689 Prime Distance(数论:素数筛选模板)
题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...
随机推荐
- webpack 搭建React(手动搭建)
前言 最近真的都是在瞎学,看到自己不是很明白的东西,都喜欢自己手动去敲1到3遍(晚上下班的时候咯), 瞧,React 基于webpack 搭建,react 官方有一套手脚架工具,我自己也搭建过确实挺 ...
- CodeForces-721C-Journey(DAG, DP)
链接: https://vjudge.net/problem/CodeForces-721C 题意: Recently Irina arrived to one of the most famous ...
- 【NOIP2016提高A组五校联考1】道路规划
题目 分析 我们考虑,当现在有一个合法的集合时,如何往里面增加一个点,使这个集合仍然合法. 假设现在有一个合法的集合, 那么当我们加入一个点,它的道路穿过来整个集合,那么 然后搞一遍最长下降子序列就可 ...
- springCloud——Eureka、Ribbon理解
一. 服务注册中心.服务提供者.服务消费者 如何通信? 客户端: 应用主类中配置@EnableDiscoveryClient application.properties中配置defaultZone指 ...
- 对js数组去重的研究
1.利用es5 let arr = [1, 2, 3, 4, 5, 6, 7, 1, 2, 3] const unique=arr=>{ return Array.from(new Set(ar ...
- js能否上传文件夹
文件夹上传:从前端到后端 文件上传是 Web 开发肯定会碰到的问题,而文件夹上传则更加难缠.网上关于文件夹上传的资料多集中在前端,缺少对于后端的关注,然后讲某个后端框架文件上传的文章又不会涉及文件夹. ...
- 【BZOJ3876】 [Ahoi2014]支线剧情
Description [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现 ...
- Rust:剑指C++
Rust:极富活力和前途的编程语言,剑指C++ 今天开始学习Rust,马上要回去休息了,只贴上一段实例代码,在后续的学习中,会对这种语言进行一个详尽的介绍(学习中....). extern crate ...
- 【python 应用之四】提升 Python 运行性能的 7 个习惯
大家都知道艺赛旗的 RPA 依赖于 python 语言.因此我们可以掌握一些技巧,可尽量提高 Python 程序性能,也可以避免不必要的资源浪费.1.使用局部变量 尽量使用局部变量代替全局变量:便于维 ...
- onload,domcontentload区别+onload详解
todo onLoad是的在页面所有文件加载完成后执行 DomContentLoad是Dom加载完成后执行,不必等待样式脚本和图片加载 domContentLoad更为合理, 原理: 如果是webki ...