转自:https://www.zhihu.com/question/40746887/answer/88428236

连通分量有三种∶边双连通分量,点双连通分量,强连通分量,前两种属于无向图,后一种属于有向图

定义:

双连通分量又分双连通分量和边双连通分量两种。若一个无向图中的去掉任意一个节点(一条边)都不会改变此图的连通性,即不存在割点(桥),则称作点(边)双连通图。一个无向图中的每一个极大点(边)双连通子图称作此无向图的点(边)双连通分量。

代码如下:

点双联通
struct Edge{
int u,v;
Edge(int _u,int _v):u(_u),v(_v){}
}edge[maxn];
int dfn[maxn],low[maxn],cut[maxn],bccno[maxn];
vector<int>gra[maxn],bcc[maxn];
stack<int>stk;
int cnt,bcnt; void tarjan(int f,int u){
dfn[u]=low[u]=++cnt;
int child=0;
int sz=gra[u].size();
for(int i=0;i<sz;i++){
int id=gra[u][i];
int v=edge[id].v;
if(!dfn[v]){
stk.push(id);
child++;
tarjan(u,v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
cut[u]=1;
bcc[++bcnt].clear();
while(1){
int id=stk.top();
stk.pop();
int uu=edge[id].u;
int vv=edge[id].v;
if(bccno[uu]!=bcnt){
bcc[bcnt].push_back(uu);
bccno[uu]=bcnt;
}
if(bccno[vv]!=bcnt){
bcc[bcnt].push_back(vv);
bccno[vv]=bcnt;
}
if(uu==u&&vv==v){
break;
}
}
}
}else if(dfn[v]<dfn[u]&&v!=f){
stk.push(id);
low[u]=min(low[u],dfn[v]);
}
}
if(f<0&&child==1){
cut[u]=0;
}
}
边双联通
struct Edge{
int u,v;
Edge(int _u,int _v):u(_u),v(_v){}
}edge[maxn];
int dfn[maxn],low[maxn],bccno[maxn];
vector<int>gra[maxn],bcc[maxn];
bool isb[maxn];
void tarjan(int f,int u){
dfn[u]=low[u]=++cnt;
int sz=gra[u].size();
for(int i=0;i<sz;i++){
int id=gra[u][i];
int v=edge[id].v;
if(!dfn[v]){
tarjan(u,v);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]){
isb[id]=isb[id^1]=1;
}
}else if(dfn[v]<dfn[u]&&v!=f){
low[u]=min(low[u],dfn[v]);
}
}
}
void dfs(int u){
dfn[u]=1;
bccno[u]=bcnt;
int sz=gra[u].size();
for(int i=0;i<sz;i++){
int id=gra[u][i];
int v=edge[id].v;
if(isb[id]){
continue;
}
if(!dfn[v]){
dfs(v);
}
}
}
int main(){
for(int i=1;i<=n;i++){
if(!dfn[i]){
tarjan(-1,i);
}
}
memset(dfn,0,sizeof(dfn));
for(int i=1;i<=n;i++){
if(!dfn[i]){
bcnt++;
dfs(i);
}
}
}

  

双联通的tarjan算法的更多相关文章

  1. poj-3177(并查集+双联通分量+Tarjan算法)

    题目链接:传送门 思路: 题目要将使每一对草场之间都有至少两条相互分离的路径,所以转化为(一个有桥的连通图至少加几条边才能变为双联通图?) 先求出所有的桥的个数,同时将不同区块收缩成一个点(利用并查集 ...

  2. HDU4612(Warm up)2013多校2-图的边双连通问题(Tarjan算法+树形DP)

    /** 题目大意: 给你一个无向连通图,问加上一条边后得到的图的最少的割边数; 算法思想: 图的边双连通Tarjan算法+树形DP; 即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求 ...

  3. 强联通块tarjan算法

    http://poj.org/problem?id=1236第一问:需要几个学校存在软件,才能通过传递,使得所有的学校都有软件 用tarjan算法求出强联通分量后,将每个联通分量缩成一个点,那么问题1 ...

  4. 强联通分量-tarjan算法

    定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强 ...

  5. 无向图边双联通分量 tarjan 模板

    #include <bits/stdc++.h> using namespace std; const int MAXN = 100005; const int MAXM = 500005 ...

  6. Codeforces 732F [边双联通分量][tarjan]

    /* 不要低头,不要放弃,不要气馁,不要慌张 题意: 给一个无向图.现在要求给这个无向图的边加上方向. 定义f(x)为从x点出发能够到达的点的数目. 使得MIN(f(x))最大. 思路: 先tarja ...

  7. 有向图的强联通分量 Tarjan算法模板

    //白书 321页 #include<iostream> #include<cstdio> #include<cstring> #include<vector ...

  8. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  9. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

随机推荐

  1. BZOJ4710 [Jsoi2011]分特产 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...

  2. python输出转义字符

    转义字符在字符串中不代表自己,比如\n代表回车,不代表\n字符,那我想输入转义字符本身呢? 答:在字符串前面加个r 如print(“aa\nbb”) 会输出aa bb 如print(r"aa ...

  3. Syntax behind sorted(key=lambda :)

    I think all of the answers here cover the core of what the lambda function does in the context of so ...

  4. python每日练习10题

    161.求1000以内的所有的素数以及闰年的数之和 第一步:求1000以内的素数,素数:只能被1和本身整除的数叫素数 import math def is_prime(num): if num ==1 ...

  5. IntelliJ IDEA设置maven

    1.更改默认的maven仓库 2.手动更新maven 项目——也就是下载依赖的jar包 3. 不想每次手动更新,设置IDEA自动更新mav项目,下载jar包

  6. 分别在javascript和JSP中动态设置下拉列表默认值

    一.JavaScript中动态设置select标签中<option>选项的默认值: 比如,要完成下边这个下拉列表的动态显示,并且当进行前后翻页时,下拉列表中的值自动更新为当前页码: 图1 ...

  7. .NET Core 使用 mongodb

    1.运行环境 开发工具:Visual Studio 2017 JDK版本:.NET Core 2.0 项目管理工具:nuget 2.GITHUB地址 https://github.com/nbfujx ...

  8. AtCoder Grand Contest 012 A - AtCoder Group Contest(贪心)

    Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement There are 3N participa ...

  9. mac 上查看python3的各种安装路径

    1.mac chromedriver的安装目录:/usr/local/bin 2.mac htmltestrunner的存放目录:命令行下 import sys sys.path/Library/Fr ...

  10. Java执行static顺序

    1.定义: 1. Java中静态变量只能在类主体中定义,不能在方法中定义. 静态变量属于类所有而不属于方法. 2. 静态块:用static申明,JVM加载类时执行,仅执行一次       构造块:类中 ...