TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集
1、RNN(Recurrent Neural Network)循环神经网络模型
详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html
2、LSTM(Long Short Term Memory)长短期记忆神经网络模型
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib import rnn # 载入数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 输入图片是28*28
n_inputs = 28 # 输入一行,一行有28个数据(28个像素点),即输入序列长度为28
max_time = 28 # 一共28行
lstm_size = 100 # 隐层单元
n_classes = 10 # 10个分类
batch_size = 50 # 每批次50个样本
n_batch = mnist.train.num_examples // batch_size # 计算一共有多少个批次 # 这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32, [None, 784])
# 正确的标签
y = tf.placeholder(tf.float32, [None, 10]) # 初始化权值
weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
# 初始化偏置值
biases = tf.Variable(tf.constant(0.1, shape=[n_classes])) # 定义RNN网络
def RNN(X, weights, biases):
inputs = tf.reshape(X, [-1, max_time, n_inputs])
# 定义LSTM基本CELL
lstm_cell = rnn.BasicLSTMCell(lstm_size)
# final_state[0]是cell state
# final_state[1]是hidden_state
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, inputs, dtype=tf.float32)
results = tf.nn.softmax(tf.matmul(final_state[1], weights) + biases)
return results # 计算RNN的返回结果
prediction = RNN(x, weights, biases)
# 损失函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
# 使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 把correct_prediction变为float32类型
# 初始化
init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
结果为:
TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集的更多相关文章
- deep_learning_LSTM长短期记忆神经网络处理Mnist数据集
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...
- TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)
from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...
- Tensorflow学习教程------普通神经网络对mnist数据集分类
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.exam ...
- TensorFlow——CNN卷积神经网络处理Mnist数据集
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...
- Python实现bp神经网络识别MNIST数据集
title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...
- 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...
- Keras(五)LSTM 长短期记忆模型 原理及实例
LSTM 是 long-short term memory 的简称, 中文叫做 长短期记忆. 是当下最流行的 RNN 形式之一 RNN 的弊端 RNN没有长久的记忆,比如一个句子太长时开头部分可能会忘 ...
- LSTM - 长短期记忆网络
循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...
- Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类
#coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...
随机推荐
- asp.net form submit 在Chrome里面看Form提交
Chrome中查看 request form data 在Fiddler中查看
- JSP——JSTL定制标签 - 递归标签显示属性结构
编写定制标签分为三个步骤:编写标签处理器.配置标签.使用标签. 1.标签处理器 标签处理器和标签是一一对应的关系 package com.oolong.utils.customtags; impo ...
- windows环境安装nexus
1.下载安装nexus安装包,我用的是nexus-2.14.13-01版本 2. 以管理员身份打开cmd命令窗口 3.进入到nexus bin目录下 输入命令 nexus install 4. 启动 ...
- @RequestHeader和@CookieValue的使用
/** * 了解: * * @CookieValue: 映射一个 Cookie 值. 属性同 @RequestParam */ @RequestMapping("/testCookieVal ...
- Android之View的绘制流程
本篇文章会从源码(基于Android 6.0)角度分析Android中View的绘制流程,侧重于对整体流程的分析,对一些难以理解的点加以重点阐述,目的是把View绘制的整个流程把握好,而对于特定实现细 ...
- OpenCV学习笔记(6)——几何变换
对图像进行各种变换,如移动,旋转,仿射变换等 变换 opencv提供了两个变换函数cv2.warpAffine cv2.warpPerspective使用这两个函数你可以实现所有类型的变换.前者接收的 ...
- BeanDefinition 实例
BeanDefinition BeanDefinition /** * BeanDefinition 用于描述一个 bean 实例,包括属性值.构造参数和补充信息. */ public interfa ...
- python + 爬虫 + fiddler + 夜神模拟器 爬取app(1)
抓包 抓包是爬虫里面经常用到的一个词,完整的应该叫做抓取数据请求响应包 ,而Fiddler这款工具就是干这个的 普通https抓包设置 打开Fiddler ------> Options .然后 ...
- java里poi操作excel的工具类(兼容各版本)
转: java里poi操作excel的工具类(兼容各版本) 下面是文件内具体内容,文件下载: import java.io.FileNotFoundException; import java.io. ...
- MySQL 创建函数报错 This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its declaration and binary logging is enabled (you *might* want to use the less safe log_bin_trust_function_creators
问题描述 通过Navicat客户端,创建MySQL函数(根据的当前节点查询其左右叶子节点)时报错,报错信息如下: This function has none of DETERMINISTIC, NO ...