1、RNN(Recurrent Neural Network)循环神经网络模型

详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html

2、LSTM(Long Short Term Memory)长短期记忆神经网络模型

详见LSTM长短期记忆神经网络:http://www.cnblogs.com/pinard/p/6519110.html
 
3、LSTM长短期记忆神经网络处理Mnist数据集
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib import rnn # 载入数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 输入图片是28*28
n_inputs = 28 # 输入一行,一行有28个数据(28个像素点),即输入序列长度为28
max_time = 28 # 一共28行
lstm_size = 100 # 隐层单元
n_classes = 10 # 10个分类
batch_size = 50 # 每批次50个样本
n_batch = mnist.train.num_examples // batch_size # 计算一共有多少个批次 # 这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32, [None, 784])
# 正确的标签
y = tf.placeholder(tf.float32, [None, 10]) # 初始化权值
weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
# 初始化偏置值
biases = tf.Variable(tf.constant(0.1, shape=[n_classes])) # 定义RNN网络
def RNN(X, weights, biases):
inputs = tf.reshape(X, [-1, max_time, n_inputs])
# 定义LSTM基本CELL
lstm_cell = rnn.BasicLSTMCell(lstm_size)
# final_state[0]是cell state
# final_state[1]是hidden_state
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, inputs, dtype=tf.float32)
results = tf.nn.softmax(tf.matmul(final_state[1], weights) + biases)
return results # 计算RNN的返回结果
prediction = RNN(x, weights, biases)
# 损失函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
# 使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 把correct_prediction变为float32类型
# 初始化
init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

 结果为:

 

TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集的更多相关文章

  1. deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  2. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  3. Tensorflow学习教程------普通神经网络对mnist数据集分类

    首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.exam ...

  4. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  5. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

  6. 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化

    一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...

  7. Keras(五)LSTM 长短期记忆模型 原理及实例

    LSTM 是 long-short term memory 的简称, 中文叫做 长短期记忆. 是当下最流行的 RNN 形式之一 RNN 的弊端 RNN没有长久的记忆,比如一个句子太长时开头部分可能会忘 ...

  8. LSTM - 长短期记忆网络

    循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...

  9. Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类

    #coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...

随机推荐

  1. linux 实现U盘自动挂载

    某些场景下,服务器可能没有必要的键盘等输入设备.屏幕等输出设备.此时需要在没有人为干预的情况下实现当插入U盘或者硬盘后自动挂载,并执行某些脚本动作.以下是我的实践过程. 必要组件 udev,udisk ...

  2. Ajax中Put和Delete请求传递参数无效的解决方法(Restful风格)

    本文装载自:http://blog.csdn.net/u012737182/article/details/52831008    感谢原文作者分享 开发环境:Tomcat9.0 在使用Ajax实现R ...

  3. Python基本语法_函数_参数的多类型传值

    前言 上一篇主要介绍了Python函数的参数类型,本篇继续学习Python函数多类型传值. 目录 前言 目录 软件环境 参数的多类型传值 向函数传递Tuple 向函数传递List 向函数传递Dicti ...

  4. 问题:anaconda: command not found

    打开Terminal 1.使用命令:sudo apt install vim 安装vim文本编辑器2.使用命令:vim ~/.bashrc 修改环境变量 3.在文本最后添加命令:export PATH ...

  5. SQLALchemy如何查询mysql某个区间内的数据

    查了下,找到3种方式: 方法一注意时间格式:xxxx-xx-xx 方法二没有‘day’ 方法三的时间格式同方法一 1.result = Jobs.query.filter(Jobs.create_ti ...

  6. flum到kafka 收集数据 存储到redis 案例 (ip.txt)

    ip.scala package ip import org.apache.kafka.clients.consumer.ConsumerRecord import org.apache.kafka. ...

  7. Python基础知识思维导图|自学Python指南

    微信公众号[软件测试大本营]回复"python",获取50本python精华电子书. 测试/开发知识干货,互联网职场,程序员成长崛起,终身学习. 现在最火的编程语言是什么?答案就是 ...

  8. LR接口测试案例(录制)

  9. Django ModelForm操作及验证

    一.内容回顾 Model - 数据库操作 - 验证 class A(MOdel): user = email = pwd = Form - class LoginForm(Form): email = ...

  10. Express全系列教程之(十一):渲染ejs模板引擎

    一.简介 相比于jade模板引擎,ejs对原HTML语言就未作出结构上的改变,只不过在其交互数据方面做出了些许修改,相比于jade更加简单易用.因此其学习成本是很低的.您也可参考ejs官网:https ...