[CSP-S模拟测试]:f(Trie树+二分答案+meet in middle+two pointers)
题目传送门(内部题67)
输入格式
第一行,三个整数$n$、$k$、$p$。
第二行,$n$个自然数,表示$\{a_i\}$。
输出格式
输出一行,两个自然数,表示$f(res)$、$res$。
样例
样例输入1:
4 3 5
2 0 3 7
样例输出1:
4 4
样例输入2:
2 2 1
2 0
样例输出2:
0 2
数据范围与提示
本题有$spj$,输出格式正确的情况下,仅回答正确$f(res)$、$res$中的一个可以获得$60\%$的分数(向下取整)。

题解
考虑怎样才能形成逆序对,或怎样才能让本身的逆序对消失。
设$a,b$,将其分解为二进制,我们只有改变其最高的不同位才能改变其大小关系;若对于其最高的不同位$a$为$0$,$b$为$1$,那么如果$xor$一个这一位是$1$的数,则其大小关系会改变,反之同理。
所以考虑$Trie$,将每一个$a_i$分解成二进制插入并计算贡献即可。
这样的算法是$55$分的。
考虑如何优化,部分正确提示了可以二分。
二分逆序对的个数即可,最后再用二分出来的值返回去找$res$即可。
时间复杂度:$\Theta(\log n^2\times 2^{\frac{k}{2}})$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int k;
long long n,p;
int trie[20000000][2],cnt=1;
long long sum[20000000][2],num[20000000];
long long ans;
long long val;
long long que[3000001];
pair<long long,int> f1[3000001],f2[3000001];
void insert(int x)
{
int p=0;
for(int i=k-1;i>=0;i--)
{
if(!trie[p][(x>>i)&1])trie[p][(x>>i)&1]=++cnt;
sum[i][(x>>i)&1]+=num[trie[p][((x>>i)&1)^1]];
p=trie[p][(x>>i)&1];
num[p]++;
}
}
bool judge(long long x)
{
long long res=0;
int fail=(1<<(k-k/2));
for(int i=0;i<(1<<(k/2))&&f1[i].first<=x;i++)
{
while(x-f1[i].first<=f2[fail-1].first&&fail)fail--;
res+=fail;
}
if(res<p){val=res;return 1;}
return 0;
}
long long getans()
{
int fail=(1<<(k-k/2))-1;
for(int i=0;i<(1<<(k/2))&&f1[i].first<=ans;i++)
{
long long x=ans-f1[i].first;
while(x<f2[fail].first&&fail>=0)fail--;
if(f2[fail].first==x)que[++que[0]]=f1[i].second+(1<<(k/2))*f2[fail].second;
}
sort(que+1,que+que[0]+1);
return que[p-val];
}
int main()
{
scanf("%lld%d%lld",&n,&k,&p);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
insert(x);
}
for(int i=0;i<(1<<(k/2));i++)
{
for(int j=0;j<(k/2);j++)f1[i].first+=sum[j][i>>j&1];
f1[i].second=i;
}
for(int i=0;i<(1<<(k-k/2));i++)
{
for(int j=0;j<(k-k/2);j++)f2[i].first+=sum[j+k/2][i>>j&1];
f2[i].second=i;
}
sort(f1,f1+(1<<(k/2)));
sort(f2,f2+(1<<(k-k/2)));
long long lft=0,rht=n*(n-1)/2;
while(lft<=rht)
{
long long mid=(lft+rht)>>1;
if(judge(mid)){lft=mid+1;ans=mid;}
else rht=mid-1;
}
printf("%lld %lld",ans,getans());
return 0;
}
rp++
[CSP-S模拟测试]:f(Trie树+二分答案+meet in middle+two pointers)的更多相关文章
- 洛谷P4344 脑洞治疗仪 [SHOI2015] 线段树+二分答案/分块
!!!一道巨恶心的数据结构题,做完当场爆炸:) 首先,如果你用位运算的时候不小心<<打成>>了,你就可以像我一样陷入疯狂的死循环改半个小时 然后,如果你改出来之后忘记把陷入死循 ...
- [BZOJ 2653] middle(可持久化线段树+二分答案)
[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...
- 2018.10.20 NOIP模拟 巧克力(trie树+dfs序+树状数组)
传送门 好题啊. 考虑前面的32分,直接维护后缀trietrietrie树就行了. 如果#号不在字符串首? 只需要维护第一个#前面的字符串和最后一个#后面的字符串. 分开用两棵trie树并且维护第一棵 ...
- BZOJ3166 [Heoi2013]Alo 【可持久化trie树 + 二分 + ST表】
题目 Welcome to ALO ( Arithmetic and Logistic Online).这是一个VR MMORPG , 如名字所见,到处充满了数学的谜题. 现在你拥有n颗宝石,每颗宝石 ...
- 4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat
好题 np. 对于20分 显然可以爆搜. 对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾. 所以容易 发现这是一个2-sat问题. ...
- [CSP-S模拟测试]:中间值(二分)
题目背景 $Maxtir$喜欢序列的中间值. 题目传送门(内部题127) 输入格式 第一行输入两个正整数$n,m$,其中$m$是操作和询问次数. 接下来两行每行输入$n$个非负整数,每一行分别表示两个 ...
- BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...
- 【bzoj2653】【middle】【主席树+二分答案】
Description 一个长度为 n 的序列 a ,设其排过序之后为 b ,其中位数定义为 b[n/2] ,其中 a,b 从 0 开始标号 , 除法取下整. 给你一个长度为 n 的序列 s .回答 ...
- 洛谷P4632 [APIO2018] New Home 新家(动态开节点线段树 二分答案 扫描线 set)
题意 题目链接 Sol 这题没有想象中的那么难,但也绝对不简单. 首先把所有的询问离线,按照出现的顺序.维护时间轴来处理每个询问 对于每个询问\((x_i, y_i)\),可以二分答案\(mid\). ...
随机推荐
- MySQL-快速入门(3)运算符
1.常见的运算符:算术运算符.比较运算符.逻辑运算符.位运算符. 算术运算符:+.-.*./.%(求余). 比较运算符:>.<.=.>=.<=.!=.in.between an ...
- selectnodes和selectSingleNode
selectnodes: selectNodes和ChildNodes获取XML内容数组的差异性 我们在使用XML进行查询或者变更数据的时候,需要注意两个很相近但结果相差很大的用法,如下: 1: Xm ...
- 基类子类在Qt信号量机制下的思考
背景知识: 基类 superClass class superClass { public: superClass() { std::string m = "superClass() &qu ...
- shell学习笔记1---shell编程基础
Shell是什么? Shell 是一个应用程序,它连接了用户和 Linux 内核,让用户能够更加高效.安全.低成本地使用 Linux 内核,这就是 Shell 的本质. Shell 本身并不是内核的一 ...
- 初次尝试python爬虫,爬取小说网站的小说。
本次是小阿鹏,第一次通过python爬虫去爬一个小说网站的小说. 下面直接上菜. 1.首先我需要导入相应的包,这里我采用了第三方模块的架包,requests.requests是python实现的简单易 ...
- git分支/标签操作
git分支类似于某一个模块,等到所有模块开发完毕时,最后聚合在一起形成一个项目.而分支之间一般是不会受影响的. git 分支的基本操作: git branch branchname 表示创建分支,新建 ...
- ELK + filebeat集群部署
ELK + filebeat集群部署 一.ELK简介 1. Elasticsearch Elasticsearch是一个实时的分布式搜索分析引擎, 它能让你以一个之前从未有过的速度和规模,去探索你的数 ...
- python之模块导入和包
一.何为模块 1.一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 2.模块目的和函数,对象等一样,是为了代码的复用性而存在的.即一个py程序写了很多功能,也可 ...
- Keepalived高可用服务器案例
部署Keepalived高可用软件,实现如下: - 使用Keepalived实现web服务器的高可用 - Web服务器IP地址分别为192.168.4.100和192.168.4.200 - Web服 ...
- 【学习】014 深入理解Http协议
Http协议入门 什么是http协议 http协议: 对浏览器客户端 和 服务器端 之间数据传输的格式规范 查看http协议的工具 1)使用火狐的firebug插件(右键->firebug-& ...